Triton: A Flexible Hardware Offloading Architecture for
Accelerating Apsara vSwitch in Alibaba Cloud

Xing Lif$*, Xiaochong JiangT*, Ye Yang§*, Lilong Chen, Yi Wang®, Chao Wang§, Chao Xu?®, Yilong Lv®, Bowen Yang§,
Taotao Wu®, Haifeng Gao®, Zikang Chen®, Yisong Qiao®, Hongwei Ding®, Yijian Dong®, Hang Yang®, Jianming Song®,
Jianyuan Lu®, Pengyu Zhang®, Chengkun Wei'®, Zihui Zhang', Wenzhi Chen'®, Qinming He', Shunmin Zhu*%"
Zhejiang University *Alibaba Cloud *Tsinghua University

ABSTRACT

Apsara vSwitch (AVS) is a per-host deployed forwarding component
for instance network connectivity in the Alibaba Cloud. To meet the
growing performance demands, we accelerated AVS by adopting
the most widely used “Sep-path” offloading architecture, which
introduces a separate hardware data path to speed up popular
traffic. However, the deployment results prove that it is difficult
to bridge the gap in performance and programming flexibility of
the software and hardware data paths, resulting in unpredictable
performance and low iteration velocity.

This paper introduces Triton, a flexible hardware offloading archi-
tecture for accelerating AVS. Triton stands out with a unified data
path, where each packet passes serially through software and hard-
ware processing to ensure predictable performance. For flexibility,
Triton implements an elegant workload distribution model, which
offloads generic tasks to hardware but maintains dynamic logic in
software. Additionally, Triton integrates a series of cutting-edge
software-hardware co-designs, including vector packet processing
and header-payload slicing, to mitigate software bottlenecks and
enhance forwarding efficiency. The deployment results compared
to our prior solution based on “Sep-path” reveal that Triton achieves
predictable high bandwidth and packet rate, and notably improves
the connection establishment rate by 72%, with only 2us increase
in latency. More importantly, the flexibility and iteration velocity
of the software in Triton will save development costs and bolster
maintenance efficiency for cloud vendors.

KEYWORDS
Virtual switch, Hardware offloading, SmartNIC

1 INTRODUCTION

Apsara vSwitch (AVS) is a critical, per-host forwarding component
in Alibaba Cloud, providing connectivity and management for com-
puting instances like VMs, containers, and bare metals, akin to
the open-source and other industry vSwitches [1, 36, 46, 47, 53].
Apart from the basic functions, AVS also supports advanced features
for tenants, such as Traffic Mirroring [11, 19] and Flowlog [8, 16].
To achieve that, both the basic and advanced functions are facili-
tated by numerous predefined policy tables, necessitating efficient
packet matching for action determination. Consequently, accelerat-
ing “match-action” and enhancing AVS forwarding performance
remain our constant pursuit.

Over the past decade, we have integrated various optimization
methods, including the user-space and polling mode drivers [13, 29,

*Co-first authors “Co-corresponding authors

35, 42, 52, 54, 61], into the software AVS and achieved the perfor-
mance of 10 Gbps/1.5 Mpps for each single CPU core. Despite these
improvements, the software AVS still falls short of the line rate
and ~100 Gbps bandwidth in modern Network Interface Controllers
(NICs), which has been warned in [57]. This shortfall prompted
us to use SmartNICs with hardware accelerators, such as Field
Programmable Gate Arrays (FPGAs) and Application Specific In-
tegrated Circuits (ASICs), for efficiently offloading “match-action”
tasks [30, 50].

To tackle skewed network traffic distribution in cloud data cen-
ters and accelerate most of the popular traffic [27, 55], we researched
existing works and found that some mainstream solutions divide
packet forwarding into two separate data paths: a software data
path running the whole vSwitch, and a hardware acceleration path
acting as a forwarding cache [5, 6, 12, 37]. In this paper, we refer
to this design as “Sep-path”. Due to its minimal intrusiveness and
straightforward integration, we chose the “Sep-path” for accelerat-
ing AVS with no major changes to the existing software framework.

However, the deployment of the “Sep-path” architecture in Al-
ibaba Cloud has revealed several challenges for AVS, in addition
to its advantages in handling popular traffic. These issues arising
from large-scale deployment can be categorized into three types:

o First, the uncertainty in the selection of data paths for ten-
ant traffic leads to unpredictable performance. The “match-
action” tasks in AVS cannot always be implemented in the
hardware data path due to the hardware limitations. In at
least 10% of cases where “match-action” tasks are not suit-
able to implement in hardware accelerators, the performance
is compromised and Service Level Agreements (SLAs) may
not be guaranteed.

e Second, the long development life cycle of hardware acceler-
ators hinders the evolution of AVS. The “Sep-path” architec-
ture necessitates the concurrent design and implementation
of “match-action” tasks in both software and hardware accel-
erators to accommodate emerging cloud network services,
decelerating the iteration velocity of AVS [39, 44, 64].

e Last but not least, the “Sep-path” architecture increases main-
tenance costs due to the introduced hardware acceleration
data path. Statistical analysis in Alibaba Cloud indicates
that 65% of AVS deployment issues stem from hardware and
software-hardware interactions, further exacerbating the
prolonged development cycle issue.

In this paper, we introduce Triton, a flexible hardware offload-
ing architecture for AVS, designed to address these limitations. In
contrast to the “Sep-path” architecture, Triton performs all packet

processing in a single pipeline divided into three stages: the Hard-
ware Pre-Processor, the Software Processing, and the Hardware
Post-Processor. To derive a reasonable division of functionality, we
measured the CPU usage of AVS under a typical workload (§4.1),
and chose the following distribution: the Pre-Processor and Post-
Processor stages leverage hardware to implement generic but time-
consuming tasks (e.g., parsing, fragmentation, and encryption) for
accelerating the Software Processing stage which runs the highly
flexible “match-action” tasks (§4.2).

To maximize the potential of hardware acceleration and mitigate
bottlenecks in Triton, we adopted a series of hardware-software
co-designs (§4.3). The techniques include a flow-based packet ag-
gregation mechanism in hardware and vector packet processing
in software for improved packet rate (§5.1), as well as support for
jumbo frames and a novel header-payload slicing scheme for en-
hanced bandwidth (§5.2). Our evaluations demonstrate that these
co-designs enable Triton to achieve comparable packet rate and
bandwidth to the hardware data path in “Sep-path”, while preserv-
ing software flexibility (§7). The insights and lessons learned from
deploying Triton in Alibaba Cloud may offer valuable guidance for
the academic community and other cloud vendors (§8).

The detailed contributions can be summarized as follows:

o First, we introduce the experience in accelerating AVS in Al-
ibaba Cloud and present Triton, a flexible hardware offloading
architecture. Differing from our prior solution based on the
“Sep-path” architecture, Triton aims to balance performance
and flexibility by unifying the data paths, and modeling to
selectively offload generic network tasks to hardware accel-
erators.

e Second, we fully explore hardware and software co-designs
to address potential performance issues in the software part
of Triton, including vector packet processing and header-
payload slicing to improve packet rate and bandwidth.

o Third, we deploy Triton in Alibaba Cloud to accelerate AVS
and conduct real-world evaluations. The results demonstrate
that Triton also achieves comparable performance accelera-
tion to our prior solution based on the “Sep-path” architec-
ture besides the advantage in predictable performance and
iteration velocity. With the hardware-software co-designs,
Triton improves AVS connection establishment rate by 72%,
with only 2 us latency increased than the hardware data path
in “Sep-path”.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce AVS and its software framework
evolution from kernel space (version 1.0 and 2.0) to user space (ver-
sion 3.0). Based on AVS 3.0, we developed a hardware offloading
solution under the widely used “Sep-path” architecture. Unfor-
tunately, we found that it brings issues including unpredictable
performance and limited flexibility under large-scale operations.

2.1 Apsara vSwitch (AVS)

The AVS, integral to the Achelous network virtualization plat-
form [63], is tasked with providing network connectivity and man-
agement for instances including VMs, bare metals, and contain-
ers. Central to its functionality, AVS efficiently matches incoming

packets with a series of predefined policy tables and executes cor-
responding actions, which are vital to the forwarding performance.

Distinct from open-source vSwitches, which mainly focus on
stateless forwarding and portability, AVS is tailored for stateful
cloud services. First, without the demand for cross-platform de-
ployment, AVS can be customized for high performance in both
hardware and software. For example, the flow table in AVS is cus-
tomized for many stateful services, and we proposed optimizations
such as the “session” structure (see Sec. 2.2). Second, under the
pressure of managing large-scale table entries in the cloud net-
work, we made a more flexible decoupling between the data plane
and the control plane in AVS for rapid network convergence [63].
Third, AVS relies on stronger operation and maintenance capabili-
ties, including statistics, diagnosis, and visualization. Among them,
visualization also requires us to provide tenants with a variety of
tools like Traffic Mirroring [11, 19] and Flowlog [8, 16]. Last but
not least, programming flexibility and hot upgrade capabilities are
required for AVS to support emerging new services in the rapidly
evolving cloud infrastructure [1, 39, 44, 46, 47, 53, 64].

2.2 The Evolution of AVS Acceleration

Kernel modules. The development of AVS began more than ten
years ago when Alibaba Cloud was first established. The earliest
version of AVS 1.0 was not an independent process, but a collection
of system services. In AVS 1.0, we made full use of the existing
Netfilter modules [24] in the Linux kernel to implement various
network functions. For example, we used Traffic Control [23] to im-
plement the Quality of Service (QoS) function and used iptables [22]
to implement network security groups. To solve the performance
and management issues in these distributed modules and reduce
dependence on the Linux kernel, we developed AVS 2.0 which is
similar to the current vSwitches. It contains two processes: the
packet forwarding process in the kernel space and the daemon
process for management in the user space. In the packet forward-
ing process, AVS 2.0 abstracts the service layer and public layer to
flexibly iterate while improving forwarding performance.

User space acceleration. To minimize the overhead in kernel
space packet processing and eliminate the dependency on Linux
kernel versions, AVS 3.0 adopted the Data Plane Development Kit
(DPDK) [13] as a user-space acceleration solution. Fig. 1 illustrates
the implementation of the Fast Path and Slow Path designs in
AVS 3.0, aimed at boosting the packet forwarding rate. Central to
the Fast Path design is the “session” structure, which comprises a
pair of bidirectional flow table entries and their associated states.
Consequently, when packets are processed via the Fast Path, their
flow entries are efficiently indexed into the “session” for stateful
processing, eliminating a separate module for connection tracking.
This session-based architecture significantly accelerates network
performance, particularly for stateful services like Network Address
Translation (NAT) and Load Balance (LB). However, the AVS 3.0’s
performance of 10 Gbps/1.5 Mpps per CPU core still falls short of
matching the line rate of modern NICs. To make matters worse, we
found that deploying AVS on hosts also led to resource contention
with tenant VMs, notably in bus and cache resources. These factors
motivate us to introduce hardware outside the host to offload AVS.

AVS oo i
! Slow Path;
; [AcL }|Routing }-=Mirrof—------ ;
| [P R 3
LY < | e ———
! Fast Path;

i Key | Flow . Session
- Match Hit 1
:Parser : offow || -tes

Expand

Figure 1: The architecture of AVS. We flexibly expand the
matching tables on the Slow Path and accelerate stateful
processing through “session” on the Fast Path.

Software offloading on the System on Chip (SoC) based Smart-
NIC. Typically, there are two extreme directions on accelerating
vSwitch in SmartNIC: hardware full offloading, and software im-
plementation on SoC CPU cores. The hardware full offloading ap-
proaches utilize ASIC/FPGA to fully embed the packet processing
pipeline in hardware, achieving high performance at the expense of
flexibility. In contrast, the software-based approaches operate the
vSwitch entirely on SmartNIC’s CPU cores, prioritizing flexibility
over raw performance. But our experimental deployment with this
approach adopted on AVS revealed that while it successfully elimi-
nates packet copying between host and VM memory (i.e., between
the front-end and back-end of the virtio [56] device), it does not
enhance much overall performance. The limitation primarily stems
from the poor performance of SmartNIC’s CPU cores compared to
host CPU cores, a consequence of power limitation.

“Sep-path” hardware offloading architecture. To compromise
between the two extreme directions for accelerating AVS, we chose
to implement an offloading architecture similar to the VFP acceler-
ation solution [37] and Mellanox OVS offloading method [6]. We
named it as “Sep-path”, because it manages two separate data
paths: the hardware data path acts as a flow cache for acceleration;
the software data path runs the whole vSwitch on SoC. The AVS
acceleration solution based on “Sep-path” is shown in Fig. 2, which
is implemented on our internally developed SmartNIC. The Smart-
NIC splits into software (SoC) and hardware (FPGA) components,
linked by 2 x 8 PCle 4.0 channels, with packet forwarding logic ex-
ecuted across both. The hardware path, distinguished by offloading
popular flow table entries, accelerates the cached flows, whereas
uncached flows are processed by the software.

The “Sep-path” architecture introduces an additional hardware
forwarding path and necessitates minimal modifications to the
existing AVS software framework, which allows us to deploy it in a
short time. However, it is also the two forwarding paths that separate
the originally unified performance metric and programmability in
AVS, presenting challenges in large-scale cloud deployment.

2.3 Deployment Issues

After several years of deployment, we observed that the “Sep-path”
architecture suffered from the following issues:

Unpredictable performance. Our deployment experience and
analysis challenge the notion that average data accurately reflects

q
SoC 1AV Pipeline |
! [Cstion 1 [§]/oeav

DMA Engine

A o o

ele @‘m

§ = Parser |—=| Match |- C3ched DRAM
* ~ _ entries

DMA Engine

= Ingress traffic =—» Processed traffic =—#- HW path —» SW path

Figure 2: “Sep-path” hardware offload architecture for AVS.
We have deployed it on our self-developed SmartNIC and
operated it for years.

the “Sep-path” architecture’s efficiency. As shown in Table 1, we
evaluate the Traffic Offload Ratio (TOR, calculated by offloaded traf-
fic bytes/all traffic bytes) in 4 typical regions of Alibaba Cloud, and
find inconsistencies. For example, even in Region C with the highest
average TOR and only 1.9% of the host has TOR less than 50%, 25.5%
of tenant VMs failed to benefit significantly from hardware offload-
ing because half of their traffic was still processed via the software
data path. In Region D, nearly half of the total VMs have a TOR
below 50% while the average TOR in this region is 81%. That sug-
gests only a small proportion of tenants with long connections and
heavy traffic contribute the main TOR in cloud data centers, while
the traffic of most tenants remains unoffloadable due to the short
connection and hardware resource constraints. A typical example
of hardware resource constraints is that the hardware data path can
only afford to store RTTs for tens of thousands of flows for Flowlog
product, and the excessive flows must go through the software data
path. Consequently, VM network performance in these scenarios is
constrained to the capacity of software forwarding, impacting the
ability to ensure SLAs. Furthermore, excessive unoffloaded traffic
on a single host can lead to CPU resource contention, adversely
affecting the tenant experience.

Decreased iteration velocity. Iteration is vital on cloud platforms
for supporting new services and resolving bugs [39, 44, 64]. How-
ever, the unpredictability of future services, protocols, and actions
complicates AVS’s adaptability, requiring direct source code modi-
fications instead of simpler SDN-style orchestration. Over the past
three years, we have integrated more than 20 new features into
AVS, including one requiring parser modification, three requiring
adjustments to match fields (such as adding instance IDs or new pro-
tocol headers), and seven requiring new “actions”. The “Sep-path”
architecture amplifies the workload of design and development,
demanding parallel efforts on software and hardware data paths.
That led to a reduced iteration velocity, falling from 4-5 releases
per year to approximately 2-3 releases per year.

High maintenance costs. The deployment of the “Sep-path” ar-
chitecture for AVS acceleration has notably reduced maintenance
efficiency, particularly in terms of increased time required for bug
identification. For instance, in cases of packet loss, it is necessary
to first ascertain the data path (hardware or software) where the

Regions Average TOR

Host level distribution Host level distribution VM level distribution VM level distribution

sum(offload)/sum(all) (TOR < 50%) (TOR < 90%) (TOR < 50%) (TOR < 90%)
Region A 90% 5.7% 29.4% 39.8% 63.3%
Region B 87% 7.9% 42.3% 37.3% 63.7%
Region C 95% 1.9% 15.8% 25.5% 50.3%
Region D 81% 7% 45% 43% 66%

Table 1: The Traffic Offload Ratio (TOR) distribution at Host and VM level in typical regions.

packet loss occurred, followed by detailed analysis. Hardware path
troubleshooting is especially time-consuming, as it largely relies on
reading values in registers without any useful run-time debugging
tools. In certain scenarios, this often leads to extended periods spent
analyzing discrepancies in flow cache entries and sessions between
hardware and software. The operational statistics from nearly two
years of deployment show that of all the functional bugs, design
flaws, and product limitations, 25% are caused by hardware, 40%
are caused by software-hardware interaction (due to the complex
synchronization between two data paths), and only 35% are caused
by only AVS itself. Moreover, the issues involving hardware usually
take more time to resolve.

It is important to clarify that the deployment challenges encoun-
tered with the “Sep-path” architecture are not inherently due to
its design, which involves two separate forwarding paths. From
our perspective, the “Sep-path” represents a common optimiza-
tion strategy, facilitating the acceleration of popular traffic with
minimal modifications. However, the disparity in performance and
programmability between heterogeneous hardware platforms (i.e. CPU
and FPGA) presents a significant gap. This gap renders the “Sep-path”
architecture less suitable for rapidly iterative cloud vSwitches.

3 TRITON DESIGN OVERVIEW

To reconcile the inconsistent performance and programming ca-
pabilities of the two separate data paths, we are moving towards
unifying them and developing Triton, the new generation of hard-
ware offloading architecture for AVS. The biggest improvement in
Triton is that the packets are processed serially on both hardware
and software, and the workloads are reasonably distributed among
them. That allows predictable performance and programming flexi-
bility to support emerging services.

3.1 Design Overview

As illustrated in Fig. 3, the Triton architecture processes all packets
serially through both hardware modules and software components.
The primary distinction of Triton from the prior “Sep-path” solution
lies in its unified data path. This architectural shift offers several
benefits. First, it promotes predictable performance, which is cru-
cial for guaranteeing the SLAs for tenants. Second, it significantly
reduces both development and operation costs.

As packet processing transitions from parallel to serial pro-
cessing across software and hardware in the Triton architecture,
there is a consequential shift in workload distribution. Unlike the
“Sep-path”, where workload distribution depended on whether the
“match-action” can be offloaded, Triton allows for more granular dis-
tribution at different stages of packet processing. That enables pre-
cise workload modeling for packet forwarding, thereby assigning
flexible operations to the software, and fixed yet time-consuming

Software Slow Path
HS-rings Stateful matching

Fast Path

D —cta pkt

Hardware ________________
{Pre-Processor ,Matching

l Accelerator

'ngé’lm_"_u ra‘:::)ti{::ms
: —D

Figure 3: Triton architecture overview. Generic packet pro-
cessing workloads are offloaded to hardware for acceleration,
while the flexible logic is left to software.

tasks to the hardware. Consequently, Triton will be able to strike a
balance between performance and flexibility, effectively addressing
the limitations outlined in Sec. 2.3.

To realize the balance in Triton, we abstract the data path into
three parts: Hardware Pre-Processor, Software Processing, and Hard-
ware Post-Processor (see Fig. 3). The packet processing sequence in
Triton is as follows. Initially, in the Pre-Processor stage, the hard-
ware efficiently handles I/O offloading tasks, such as TCP Segment
Offload (TSO), UDP Fragment Offload (UFO), and packet header
parsing. Subsequently, a matching accelerator on hardware matches
the packet, which is aimed to speed up the matching stage on the
software side. As packets pass through the Pre-Processor, they are
upcalled to the software along with metadata containing interme-
diate processing results, which enables AVS to speed up software
“match-action”. After Software Processing, packets are redirected to
the hardware Post-Processor via Direct Memory Access (DMA) for
final I/O operations, including encryption and egress. The detailed
workload distribution in Triton will be demonstrated in Sec. 4.

3.2 The Advantages in Triton

Predictable performance. The unified data path in Triton offers
predictable network performance with precise upper and lower per-
formance limits, thereby ensuring compliance with performance
SLAs. Unlike the significant performance gap between the software
path and hardware path in the previous “Sep-path” architecture,
the gap between the Fast Path and Slow Path within the software
AVS is less consequential. The difference stems from the fact that
path selection in the latter is influenced by tenant behavior rather
than whether the workload can be offloaded. For example, packets
establishing new connections consume more CPU cycles on the
Slow Path, while the packets of established connections pass faster

over the Fast Path. This fact is similar in the protocol stack process-
ing within the guest OS, which is more likely to be a bottleneck
than AVS. Consequently, the unification of software and hardware
paths under Triton aligns VM network performance metrics more
closely with tenant expectations.

Flexibility and iteration efficiency. In Triton, the distribution
of workloads between software and hardware is well-designed to
achieve a balance between performance and flexibility. In Sec. 4, we
will illustrate how we model and effectively offload generic logic
to the hardware, while maintaining the programming flexibility
in software. This approach accelerates the iteration, as additional
functions can be seamlessly added to the software without changing
static hardware modules.

Maintainability with reduced operational costs. First, Triton
minimizes redundant resource utilization, resulting in resource
savings on the SmartNIC. These saved resources can be allocated
to other hypervisor services, such as storage. Additionally, Triton
assigns flexible and dynamic workloads to software, enhancing the
debugging and troubleshooting capabilities. Consequently, opera-
tional efficiency can be improved through methods like full-link
packet capture and dynamic code replacement. A comprehensive
comparison of operational tools between Triton and “Sep-path” can
be seen in Sec. 7.

Hardware acceleration without sacrificing flexibility. In the
software-based offloading architecture, hardware primarily offers
Rx and Tx capabilities, with packet processing being handled en-
tirely on the SoC cores. While this approach reduces I/O overhead,
it often faces performance issues. In contrast, Triton introduces
hardware modules that facilitate the integration of specific packet
processing stages, enhancing acceleration. This integration allows
Triton to offload as many time-consuming tasks (like parsing) as
possible to hardware for speedup without sacrificing flexibility.

Low cost for implementation. The cost associated with migrating
from “Sep-path” to Triton is reasonable. Our implementation, as
discussed in Sec. 6, shows that migration can be accomplished
by eliminating redundant logic in hardware (the FPGA units) and
introducing less than 2000 lines of code to AVS.

4 TRITON PACKET PIPELINE

In this section, we focus on optimizing Triton by effectively model-
ing the AVS packet processing tasks, and distributing the workload
between software and hardware. We first present the AVS workload
model, then describe Triton’s packet pipeline design, and finally
discuss the associated performance issues.

4.1 AVS Workload Model

We model the AVS packet processing pipeline, and divide it into
three stages: parsing, matching, and action execution.

Parsing stage. Upon receiving a packet, the AVS performs various
operations such as validation, header parsing, and extraction of
matching fields. During this stage, latency is introduced as the
CPU waits for multiple memory accesses to retrieve fields from
multiple header layers. As indicated by the perf results in Table 2,

Cost Workload
Stage (CPU usage) Distribution
Parsing 27.36% Hardware
Matching 11.2% Software & Hardware assisted
Action 24.32% Software & Hardware assisted
Driver 29.85% Software & Hardware assisted
Statistics 7.17% Software

Table 2: The CPU usage of each stage during packet process-
ing in software AVS, and the ideal workload distribution in
Triton.

these operations account for 27.36% of the CPU usage dedicated to
forwarding.

Matching stage. Following initial parsing, the AVS matches rele-
vant fields to identify the corresponding flow entry. The pipeline
encompasses both a Slow Path, typically for the first packet, and a
Fast Path aimed at accelerating subsequent packets. It is important
to recognize that the static rule lookup alone may be insufficient
for stateful packet processing. For example, stateful ACL requires
the acceptance of all reply packets once the request packets are
dispatched; in certain scenarios, recording the IP/MAC of a phys-
ical host as the next hop for reply packets is necessary. It can be
seen that matching is quite a time-consuming and flexible task. Our
findings indicate that even for long-lived connections primarily
handled on the Fast Path, hash lookup accounts for approximately
11.2% of CPU consumption.

Action execution stage. The action execution stage in AVS, char-
acterized by flexibility, executes all the actions gained from the
matching stage, including VXLAN encapsulation, NAT, and frag-
mentation [43]. It adapts to new services by expanding its action set.
Performance tests (using perf) reveal that the basic overlay network
forwarding actions consume about 24.32% of CPU resources.

Beyond the three stages, two additional workloads also impact
AVS CPU usage. NIC driver processing, exemplified by the virtio
driver, constitutes 29.85% of CPU usage. This is attributed to its
role in packet transmission and reception, including comprehen-
sive checksum calculations. Notably, checksumming (e.g., in L3 and
L4 headers) is required for both the overlay and underlay proto-
col headers. Additionally, operational code execution accounts for
7.17% of the total CPU consumption.

4.2 Packet Pipeline in Triton

Based on the model above, we meticulously distribute workload
and design the packet processing pipeline in Triton.

Parsing (on hardware). As depicted in Fig. 3, our design incor-
porates a dedicated Pre-Processor module in hardware to offload
the entire parsing stage. To ensure efficient transmission of pars-
ing results to the software, we have devised a metadata structure
that stores the intermediate outcomes. When a packet is received,
the Pre-Processor module validates it and extracts the five-tuple in
various header layers to facilitate packet matching. The extracted
intermediates are then stored within the metadata structure. Once
the parsing is completed, the metadata structure will be positioned

Miss Slow Path

Stateful Matching

Flow Cache Array
Hit
L. [TATz]3]4] -

Hash lookup
[A[e[c] -

Fast Path -
Action

| Meta Parser |
key

Flow Index Table

key |flow id
key Hit

g 1/0 Accelerator

— HW matching —> SW matching — Action execution

flow id Meta Parser

Pkt Parse

Figure 4: Hardware-assisted software packet matching.

ahead of the original packet to subsequently be passed on through
PClIe channels to the software.

Matching (on hardware & software). In matching stage, our
objective is to leverage hardware modules to mitigate the hash
lookups on the software Fast Path.

As shown in Fig. 4, we introduce a “Flow Index Table” in the
Pre-Processor module for acceleration. This table does not store
the entire flow entry which contains matching fields and actions.
Instead, it serves as a mapping between the key computed by five-
tuple hash, and the respective “flow id”. The “flow id” acts as an
index within the “Flow Cache Array” (as illustrated in Fig. 4) within
the software AVS.

Once the packet has acquired the corresponding “flow id” through
a lookup in the “Flow Index Table”, this “flow id” will be stored
in the metadata and transmitted to the software. Furthermore, ir-
respective of whether the packet is matched in the “Flow Index
Table”, the Pre-Processor will write the packet along with the meta-
data into the HS-rings. The HS-rings represent the queues located
in SoC DRAM that facilitate interaction between the hardware and
software, as depicted in Fig. 3. The software will undertake the
necessary subsequent matching operations.

Upon the packet arrives at the software AVS, the CPU cores
on the SoC will attempt to process the packet through the Fast
Path, as shown in Fig. 4. The CPU retrieves the flowid from the
metadata fields and directly accesses the corresponding flow entry.
However, if the hardware matching fails and the flowid is empty,
a hash lookup is required to locate the relevant flow entry. If the
packet fails to find the flow entry on the Fast Path, it will undergo
processing through a series of matching tables and even stateful
processing on the Slow Path. Following successful matching in Slow
Path, the resulting actions are consolidated into a list. To accelerate
the processing of subsequent packets within the same flow, a flow
entry is generated on the Fast Path, encompassing the hash key,
five-tuple, and action list.

Action execution (on software, I/O left for hardware). After
matching, the CPU undertakes traversal of the action list within
the flow entry and executes various flexible actions such as VXLAN
encapsulation, NAT, QoS, and others. Conversely, the hardware
(Post-Processor) handles I/O-intensive actions, such as fragmenta-
tion and checksumming. This approach effectively reduces the CPU
overhead associated with NIC driver checksumming (8% for physi-
cal NICs and 4% for vNICs). By primarily relying on software for

action execution, Triton offers enhanced flexibility and scalability.
For instance, the system easily accommodates the incorporation of
complex actions to support jumbo frames (see Sec. 5.2).

Triton’s packet processing pipeline also offers the additional
advantage of simplifying updates and synchronization. This is
achieved by eliminating the flow cache in the hardware, thereby
eliminating the requirement for the software to synchronize flow
information with the hardware. Moreover, since every packet under-
goes processing in both the hardware and software components, up-
dates to the “Flow Index Table” can be seamlessly executed through
instructions embedded within the metadata. As a result, the process
of updating and synchronizing becomes more streamlined within
Triton’s packet processing pipeline.

4.3 Potential Performance Issues

While Triton’s unified data path design provides a good balance
between predictable performance and flexibility, it is essential to
recognize that incorporating the software onto the per-packet data
path may give rise to potential performance issues. These issues
encompass the following aspects:

Packet rate issue. In Triton, the processing of each packet involves
time-consuming software operations, including packet matching
and action execution. The overall number of packets that can be
processed per second is constrained by the processing capability of
the CPU. As a result, when compared to the “Sep-path” solution,
Triton may potentially diminish the benefits of hardware acceler-
ation in terms of packet rate performance (measured in PPS, the
abbreviation of Packets Per Second).

Bandwidth issue. As each packet necessitates movement between
hardware and software, the available PCle bandwidth might be
exhausted. In the depicted SmartNIC, the transfer of packets be-
tween hardware modules and the SoC is achieved through DMA
operations (see Fig. 2). In the case of Triton, every packet is DMAed
from the blue hardware module to the orange SoC for processing,
and subsequently DMAed back to the hardware module. These
two DMA operations occur on the same PCle bus, resulting in the
halving of available bandwidth.

It is worth noting that these challenges pose formidable obsta-
cles in traditional software AVS architectures like software-based
offloading solutions on SoC. However, in Triton, these issues can
be effectively tackled through the utilization of hardware acceler-
ation modules. Through the optimizations highlighted in Sec. 5,
we demonstrate that Triton can achieve high PPS and bandwidth
performance comparable to the hardware forwarding in “Sep-path”.

5 PERFORMANCE OPTIMIZATION

In this section, we present the technological innovations in Triton
to effectively address the potential performance issues, including
packet rate performance and bandwidth limitations.

5.1 Packet Rate Improvement

Through observation and analysis of software processing, we found
that the widely used batch processing optimization does not allow
the CPU to process packets efficiently. When processing a batch of

EEEIA] batch 1, 4 times

matching & action _,

S

(7} 1
£ _» [2[a]2]4] Sk
]

§ 3[R0}, batch 2
a Scheduler| Hs-rings.

(a) Batch Packet Processing

schedule LA A]A]1] vector 1, process only once
1 vector

Matching Acc
Dispatcher

N 3130 vector 3

aggregated by Scheduler .
HS-rings

flow id / tuples

(b) Vector Packet Processing

Figure 5: The comparison of batch processing and vector
processing in Triton.

packets (e.g. 32 or 64 packets), the CPU will perform the “match-
action” for each packet in sequence (see Fig. 5(a)). So it can be seen
that the batch processing optimization cannot reduce the overall
times of packet matching and the instruction cache miss rate. To
this end, we propose a flow-based packet aggregation mechanism
that uses hardware to aggregate packets belonging to the same
flow into a vector, so that software can do Vector Packet Processing
(VPP, which only requires one matching for a vector) to save CPU
cycles. Compared to other existing software-based vector packet
processing solutions [31, 42], leveraging hardware for aggregating
packets of the same flow can maximize the benefits on packet rate.

Flow-based packet aggregation. As shown in Fig. 5(b), the Pre-
Processor module in Triton employs a flow-based packet aggregation
mechanism to group packets belonging to the same flow into a vec-
tor. The aggregation takes place after the packet passes parser and
matching accelerator. When a packet matches an entry in the “Flow
Index Table”, it will be aggregated based on the “flow id”. Con-
versely, if a packet fails to match, it will be aggregated based on the
five tuples. Subsequently, the vector of packets will be transferred
to the HS-ring, with the vector size indicated in the metadata of
the first packet. To minimize latency, packet aggregation module
follows the best effort principle and its efficient implementation
will be discussed in Sec. 8.

Vector packet processing (VPP). In Triton, the software packet
processing has also transitioned to vector-based granularity. As
shown in Fig. 5(b), upon receiving a packet from the HS-ring, the
CPU retrieves the vector size from the metadata. Subsequently, it
traverses backward until all packets within a vector are fetched. For
each vector, it only requires one matching operation to retrieve the
flow entry and corresponding action list. This VPP approach signifi-
cantly reduces the times of packet matching within a single flow. In
comparison to traditional batch processing optimization (Fig. 5(a)),
this technique greatly enhances packet prefetching efficiency and
increases cache hit rates. The effectiveness of this approach will be
demonstrated in Sec. 7.2.

Host1 MTU=8500 Host2 MTU=1500
VM1 |192.168.0.1 VM2 | 192.168.0.2
Triton 1 [Triton 2 10.0.0.2]
Software | DstIP_[Nexthop[MTU |
Drop &| | [192.168.0.2/10.0.0.2] 1500 | Conditions:
send icm, T @ pktlen<1500
@ Send total pkt @ pktlen>1500,
IP_DF=0
Hardware @ Frag|& sendm ® pktlen>1500,
IP_DF=1
J fragia]

Figure 6: Triton ensures connectivity in multi-MTU scenarios.
VM2 acts as a stock VM that only supports 1500 MTU.

5.2 Bandwidth Improvement

Triton achieves bandwidth improvement through two fundamen-
tal principles: increasing the packet payload and minimizing un-
necessary data movement. In this subsection, we introduce two
techniques: jumbo frames support in cloud data centers and header-
payload slicing.

Jumbo frames support. Supporting jumbo frames is crucial for
enhancing bandwidth and transmission efficiency. It increases the
effective payload per packet, reducing performance pressure on for-
warding components. For example, using 8500-byte jumbo frames
instead of 1500-byte packets can increase payload by 14% and re-
duce demand for packet rate by up to 82%.

However, supporting jumbo frames in cloud-scale data centers
presents more compatibility challenges than supporting it within
only a specific cluster. There are a number of stock VMs and out-
of-date hardware devices that do not support such a big Maximum
Transmission Unit (MTU), but have the demand to communicate
with VMs that use 8500 MTU. To make things worse, most hard-
ware switches do not support fragment and Path MTU Discovery
(PMTUD) mechanisms. That requires AVS to negotiate MTU and
ensure network connectivity for VMs.

To tackle this, we introduces path MTU and new actions to AVS
for ensuring network connectivity in multi-MTU scenarios. The
controller attaches the path MTU when issuing routing entries to
AVS, allowing awareness of the maximum acceptable MTU to the
destination. Then AVS employs three new actions, as following
REC [2, 3, 32] standards, for handling oversized packets (see Fig. 6).
For a packet that is smaller than the path MTU, the AVS will for-
ward the packet as usual. But when the packet is bigger than the
path MTU, there will be two different treatments according to the
standards. If the Don’t Fragment (DF) field in IP header is set to
1, the packet should be dropped and an ICMP message containing
path MTU will be sent to the source VM to reduce packet length.
This kind of action is complex and costs too much to generate
a new packet in hardware, so we implement it in software AVS.
But if the DF field is 0, the packet should be fragmented and sent
out. The action is fixed and I/O related, thus is more suitable to be
implemented in Post-Processor for efficiency.

Header-payload slicing (HPS). To mitigate PCle bandwidth usage
caused by needless data movement between software and hardware,
Triton presents a technique called Header-Payload Slicing (HPS).
This design is rooted in two key observations: the primary focus

meta contains
payload index —'| Software (Match & Action) |—|
________ m —=------1-_ Payload Index Table

Id_| Addr_[Timeout| index
71 Joxorta] 100us |, _i~ = REEHRICH

§ 1

1 1

1 [

1 [

b | spit b | . I/0 Acc =
1

— payload i BRAM Reagsemble
1 1
' payload buffered on > L
9 hardware ’ payload [y

Figure 7: HPS reducing PCle bandwidth occupation during
packet movement.

of packet processing in the AVS mainly lies in packet headers, and
the payload typically accounts for the majority of the bandwidth
in a packet.

The workflow of HPS is depicted in Fig. 7. The Pre-Processor
module divides the packet into header and payload segment. Once
the Pre-Processor completes matching acceleration, only the packet
header and associated metadata are delivered to the software via the
HS-rings. While the packet header undergoes processing through
the software pipeline, the payload is stored in the BRAM until the
header completes the action execution in the software and is sent
back for reassembly. That significantly reduces the PCIle bandwidth
consumption during DMA operations between the software and
hardware. For example, when forwarding an 8500-byte packet, HPS
can save approximately 97% of the PCle bandwidth.

Following the completion of software processing and the trans-
mission of the packet header back to the hardware, Triton requires
an efficient mechanism to locate the corresponding payload and
reconstruct the packet. To accomplish this, we employ a “Payload
Index Table” to manage the mapping between headers and payloads.
During packet division, the Pre-Processor attaches the payload in-
dex to the metadata. Upon the header is return from the software,
the Post-Processor module utilizes the index in the metadata to lo-
cate the corresponding payload in the “Payload Index Table” and
reassembles it into a complete packet for transmission.

In actual deployment, we found the biggest problem in HPS
is that the BRAM may be exhausted if the buffered payloads are
not reassembled in time. For example, when the software pipeline
processes too slow or encounters an exception, headers are not re-
turned on time and there are not enough buffers to store incoming
packets. To this end, we introduced timeout and version manage-
ment mechanisms to solve this problem. Since the software only
consumes a few microseconds to process a batch packets, the time-
out value of each payload needs to be set small enough, such as
100us. Then, for payload buffers that are reused for timeout, we
can avoid misuse by comparing versions when reassembling.

6 IMPLEMENTATION

In this paper, we compare the “Sep-path” version of AVS offloading
architecture with Triton version. Both are implemented based on
our internally developed SmartNIC (also referred to as CIPU [10]),
which integrates FPGA hardware logic units with Intel x86 CPU
cores on the SoC. The transition from the “Sep-path” to Triton in-
volved adding less than 2000 lines of code to AVS and reducing
redundant FPGA code on the hardware. The manpower investment
for this transition was minimal, requiring just a few engineers

for less than a month to develop the prototype. Triton optimizes
resource usage, employing only 57K Look Up Tables (LUTs) and
6.28 MB buffers for its Pre-Processor and Post-Processor, which re-
sults in a 136K LUTs reduction compared to the original “Sep-path”
architecture. The saved resources can be used to exchange for addi-
tional SoC CPU cores for higher network performance or used to
serve other hypervisors like storage and computing. Last but not
least, although our current implementation is based on FPGA, Tri-
ton’s hardware modules could potentially be implemented by using
newer technologies like eASIC [14] for improved performance and
cost-effectiveness.

7 EVALUATION

In this section, we initially evaluate the enhancements of Triton
in relation to the prior “Sep-path” architecture, focusing on AVS
performance, flexibility, and operational efficiency, with identical
hardware conditions. Subsequently, we assess the effectiveness of
the hardware acceleration techniques discussed in Sec. 5. Finally,
we conduct application performance tests under varying traffic
settings, including both long-lived and short connections.

7.1 Overall System Evaluation

First, we evaluate the performance, flexibility, and operational ca-
pability under Triton and our prior “Sep-path” architecture. The
hardware costs under two architectures are equivalent: “Sep-path”
uses 6 CPU cores and a hardware data path, while Triton uses less
hardware resources and 8 CPU cores on the SoC (the 2 more CPU
cores are gained by saving hardware resources).

Triton System Performance. Fig. 8 compares Triton and the “Sep-
path” architecture regarding bandwidth, PPS, and Connections Per
Second (CPS) performance. We use iperf [21], sockperf [26] and
“CRR” mode in netperf [25] to test the bandwidth, PPS and CPS
performance respectively. All these programs are run on multiple
processes/threads to obtain the maximum forwarding performance
of the whole system. Compared with the software path in “Sep-
path”, Triton increases the bandwidth and PPS by 2 times and 1.25
times respectively. Although there is still a small gap compared to
24 Mpps of the hardware path, 18 Mpps is sufficient to accelerate
most of the tenants according to our operational statistics. The
PPS performance in Triton can also be scaled up by increasing the
number of CPU cores in the future. Regarding CPS, Triton exhibits
a 72% improvement compared to “Sep-path”. This is because the
hardware path in “Sep-path” cannot accelerate the establishment
of new connections, while Triton’s hardware-assisted design can
enhance CPU efficiency.

Regarding latency, Triton introduces approximately 2.5us of la-
tency due to the per-packet interaction on HS-rings, as shown in
Fig. 9. However, the impact on cloud services is negligible. That is
because the latencies of applications like Redis [17] and Nginx [15]
are all in the millisecond (see Sec. 7.3), and the bottleneck is in VM
kernel processing.

Predictable Performance. We conduct tests for the route refresh
scenario to measure the predictable performance. Both architec-
tures initially support 2 million connections. We start to refresh the
route table at 17 seconds to force all traffic upcalled to Slow Path

W Scppath (SW) === Sep-path (HW) Triton 1.0 A refresh the routing table
192 192 2 430 0.8 34 (2mtie] S~ P
= 18 = 0.6 <3
= 250 2 a =
% 04 2 2 —&— Sep-path
/ = 0.2 Sep-path Al —=— Triton
= 0.0 » —+— Triton 0
Throughput Packet Rate Connections 0 2 4 6 8 10 12 0 20 40 60 80 100
(Gbps) (Mpps) Per Second (10%) Latency (ps) Time (s)

Figure 8: Overall performance

— 60

22501 'z No HPS w# NoVPP == VPP . wt NoVPP == VPP
S 200 o 430
El 5 40

£ 150 ° 320

= = 30

x=] —

= 100 =20

o 63 2

o 50 W = 510

O

& 0 0"

1500 MTU

8500 MTU

Figure 11: Bandwidth improved by HPS

Figure 9: Latency overhead

Figure 10: Predictable performance

Figure 12: PPS improved by VPP

6 Cores

Cores

Figure 13: CPS improved by VPP

7 —— . 1.0
’:?400 w4 Scp-path f{) Triton 1.0 Sep-path 05
= 7 0.8 ‘ ' .
2300 % 278.24 E 0.6l T Triton [5 0.6
S
+ 200 % ©04 <04 —&— Sep-path
o / 0.2 0.2 s
100 / £ Titon
= / 0.0 0.0

0 1 2 3 4 5 6 7 8 9 0 200 400 600 800

Short conn

Long-lived conn
Figure 14: Nginx RPS Performance

for updating the flow cache. Fig. 10 illustrates the PPS in different
architectures over 100 seconds. We observe a significant perfor-
mance drop in the “Sep-path”, approximately 75% lower than its
initial performance (i.e., the software/hardware gap), lasting for
about 1 minute. At the minute, the CPU cores are busy forwarding
traffic and issuing flow cache entries to hardware, bringing such a
huge jitter. In contrast, Triton’s unified data path only experiences
a 25% drop in performance (fast/slow path switch) within seconds.
That indicates Triton is more capable of providing tenants with
predictable network performance.

Flexibility. In terms of flexibility, Triton can easily support new fea-
tures and rapidly iterate to new releases. Compared to “Sep-path”,
Triton only requires to modify software AVS with hardware mod-
ules unchanged for evolution. According to our release record, it
significantly shortens the development life cycle by more than 50%.
This result benefits from the fine-grained workload distribution,
which enables Triton to support highly complex actions like the
PMTUD shown in Sec. 5.2.

Operational efficiency. The unified data path in Triton makes
troubleshooting easier. Firstly, by reducing synchronization, there
are fewer compatibility bugs. Secondly, Triton’s primary and flexible

Request Completion Time (ms)

Figure 15: Nginx RCT (long conn)

Request Completion Time (ms)

Figure 16: Nginx RCT (short conn)

Operational tools Sep-path Triton
Pktcap points Software only ~ Full-link
Traffic stats Coarse-grained vNIC-grained
Runtime debug Software only Full-link
Link failover Unsupported Multi-path

Table 3: Triton supports richer operational tools than Sep-
path architecture.

workloads are implemented in software, which provides more pow-
erful operational tools. As shown in table 3, Triton supports packet
capture at each critical point, enables more detailed traffic statistics,
and provides run-time debugging capabilities. For comparison, on
the hardware path of “Sep-path”, we lack these important debug-
ging capabilities. We need to note that it has been a trend to adopt
reliable overlay protocols and support multi-path transmission to
avoid packet loss in cloud data centers [51, 60]. In this scenario,
Triton provides a feasibility that the overlay protocol stack can
be implemented on the per-packet software data path, which is
difficult to achieve in the “Sep-path” architecture.

7.2 Acceleration Techniques Evaluation

In this section, we detail how each innovation in Sec. 5 contributes
to bandwidth and PPS improvement.

Bandwidth Improvement. Fig. 11 proves the effectiveness of
jumbo frames and HPS in improving bandwidth. It can be seen that
every single technique is limited in improving bandwidth because
there is no significant improvement in DMA operations and the
packet processing time of each packet. But when jumbo frames and
HPS are both supported, Triton can achieve the same bandwidth
as hardware forwarding. Our experiment proves that Triton can
support bandwidth close to 200 Gbps. If the physical server supports
multiple SmartNICs, the bandwidth can be further increased.

PPS/CPS Improvement. We conduct tests to compare the PPS
and CPS performance before and after using VPP. Fig. 12 and 13
demonstrate that the flow-based packet aggregation and vector
processing improve CPS and PPS by 27.6-36.3% (28% for 6 cores and
33% for 8 cores). That proves the hardware-assisted acceleration
methods can significantly reduce CPU usage in software forwarding,
thereby improving network performance in each dimension.

7.3 Application Performance

In this section, we deploy the real-world application to compare
the performance of Triton and the “Sep-path” architectures. We
select Nginx as the representative application because it is widely
deployed on the cloud and can be used to simulate a variety of traffic
characteristics. To validate the effects under different workloads,
we choose long-lived and short-lived connections to represent two
common workload types in production scenarios.

Nginx RPS Performance. Fig. 14 illustrates the Request-Per-
Second (RPS) of Nginx with long connections and short-lived con-
nections under Triton and “Sep-path” architectures. In the long
connection test, Triton achieves an RPS of 2.78 million, which is
81.1% of the hardware path performance in “Sep-path” and suffi-
cient for most tenants. In the short-lived connection test, Triton
outperforms the “Sep-path” by 66.7%, reaching 578.6K RPS, indi-
cating enhanced capabilities for establishing new connections and
higher concurrent performance.

Nginx RCT Distribution. Fig. 15 and 16 show the Request Com-
pletion Time (RCT) results. In the case of long-lived connections,
Triton’s latency is comparable with that of the hardware path in
“Sep-path” (where the bottleneck lies in the VM kernel). In the case
of short-lived connections, Triton significantly improves the long-
tail latency. The p90 latency is reduced by 25.8% to 143.11 ms, and
the p99 latency is reduced by 32.1% to 590.08 ms.

8 EXPERIENCE

We have deployed Triton on Alibaba Cloud for several years and
gained much operational experience. In this section, we will first
introduce some useful practices we explored in deploying Triton,
then discuss how Triton can support reliable transmission and large-
scale machine learning networks. In Sec. 8.2, we will demonstrate
the principles we explored in the development and operation of
AVS.

8.1 Deployment Experiences

Efficient implementation of flow-based packet aggregation in
Triton. As shown in Sec. 5.1, vector-based scheduling is required in
the flow-based packet aggregation strategy. In traditional designs,
reordering and scheduling an uncertain number of packets will
consume too many hardware resources and increase the system’s
complexity. Therefore, we tried to solve this problem by adding
enough hardware queues to the Pre-Processor in our implementation.
We used 1K hardware queues to store packets based on hash values
calculated from five-tuple before scheduling packets to HS-rings.
Ideally, the packets stored in each hardware queue should belong to
the same flow (or to several flows under hash collision), eliminating
the demand for packet reordering. Then each time, the scheduler
selects up to 16 packets from each queue and DMAs them to HS-
rings, then the software driver will count the number of packets
in a vector. The DMA operation of each packet takes about 16 ns
to complete, so the delay caused by scheduling 15 more additional
packets is negligible.

Unnecessary packet loss avoidance with limited BRAM in
Triton. Although we have adopted Triton with the techniques de-
scribed in Sec. 5, there is still a risk of the SoC CPU cores becoming
the bottleneck and causing packet loss due to buffer exhaustion.
The bad news is that it will become more serious as the VMs can
use higher-end CPU models. Under this trend, increasing hardware
buffer size and using more powerful SoC CPUs cannot eliminate
the risk. We believe it should be addressed by rate limiting to ten-
ant VMs, and the mechanism should be as close to the source VM
as possible to suppress the sending rate. So that the congestion
and packet drop can be avoided on all the subsequent forwarding
components.

Our approaches to handle congestion in the VM Tx and VM Rx
directions are as follows. First of all, the Pre-Processor will determine
whether the congestion will occur by monitoring the HS-ring water
level in both directions. In the VM Tx direction, the Pre-Processor
will slow down the rate of fetching packets from the correspond-
ing VM’s queues (there is a mapping relationship between the
virtio queues and the HS-rings) to form back-pressure and reduce
the sending rate in the guest OS. In the VM Rx direction, several
mechanisms need to work together. We implemented a VM-level
pre-classifier based on the mac address in the Pre-Processor to dis-
tinguish the “noisy neighbors” and do rate limiting to them, which
can provide performance isolation for others. At the same time,
the AVS on the destination host will notify the source AVS to form
back-pressure to exact source VMs.

Postponing the TSO, UFO and checksumming operations on
SmartNIC. Currently, the vNIC provides a rich series of offload
operations, such as TSO, UFO, and checksumming for VMs. Natu-
rally, they should be processed once the hardware module receives
packets from the virtio queues (see @ in Fig. 17). However, in our de-
ployment, we found that processing TSO and UFO at position @ in
Fig. 17 cannot avoid fragment operations in subsequent processing.
For example, when a packet is larger than the path MTU, it needs to
be fragmented again. Therefore, we recommend postponing these
1/0O offload operations (such as TSO and UFO) to the Post-Processor
(see @ in Fig. 17). On the one hand, it can relieve PPS pressure to

’—-| Software (Match & Action) }—l
|

_________ Yo

! Post-Processor

N

Semmem e

TSOJ/UFO, other : ® Fragment and T
checksum offload { checksum still 1
' required!)

Figure 17: The reason why we should postpone TSO/UFO and
other vNIC offload operations.

obtain greater bandwidth in software AVS because such big packets
only require one “match-action” operation. On the other hand, the
fragment and segment modules can be implemented centrally to
save resources on hardware.

Enabling reliable transmission in Triton. Supporting multi-path
and reliable transmission in cloud data centers has become a trend,
but that requires new overlay protocols, such as SRD [60], solar [45]
and falcon [20]. These new overlay protocols pose challenges to
the vSwitch because the vSwitch should be able to switch paths
in the network fabric and retransmit packets after packet loss. All
these capabilities rely on the support of a specific protocol stack.
However, under the “Sep-path” architecture, it is unrealistic for
the hardware data path with independent forwarding capability to
implement such complex protocol stack behavior. We find it is an
opportunity for Triton, because the software AVS in the unified data
path needs to process all packets, making it more suitable to deploy
overlay protocol stack for reliable transmission. A feasible approach
is to add a module for protocol stack processing in AVS, recording
RTT and sequence for each packet, and triggering retransmission
and path-switching behaviors when necessary.

Deploying Triton outside the Alibaba Cloud. Triton is a hard-
ware offloading architecture decoupled from the customized pro-
cessing logic of the AVS. The workload distribution method and
optimizations can all be easily implemented on other vSwitches.
For the hardware platform, Triton has no specific requirements for
the hardware type on SmartNIC. Tofino, FPGA, and other ASICs are
all enough to implement Pre-Processor and Post-Processor in Triton.
Although we build it based on FPGA, it is not the most cost-effective
approach. Alternatively, certain hardware like eASIC, can achieve
higher performance and lower cost.

Supporting ~Tbps level bandwidth with Triton for large-scale
machine learning,. Irrespective of the hardware path or software
path, the bandwidth is ultimately limited by the PCle bus. With
jumbo frames and HPS support, Triton can achieve up to 200 Gbps
bandwidth on a single SmartNIC. Through the horizontal expansion
of multiple SmartNICs, Triton is sufficient to support ~Tbps level
bandwidth and higher PPS on a single physical server. Moreover,
with the RDMA protocol stack being easily implemented in the
software part of Triton, the requirements of large bandwidth and
low latency for large-scale machine learning will be met.

8.2 Lessons Learned

Clarifying the boundaries of hardware capabilities. We hope
this paper will draw attention to the gap between software and

hardware. Not all workloads can be offloaded to hardware, and
challenging the hardware boundaries may introduce endless opera-
tional issues. Taking the most common TSO and UFO functions as
examples, some unusual packets such as IPv6 packets with exten-
sion headers and packets with padding data may not be suitable for
hardware to fragment and segment. So we recommend clarifying
the boundaries of hardware capabilities and always providing a
failover method for rolling back to software when hardware fails
to process the workload.

Establishing an integrated software/hardware testing system.
To bridge the knowledge gap and information distortion between
the software and hardware R&D teams, we formed a dedicated test-
ing team to conduct comprehensive tests, including full-configured
stress tests, performance tests, and functional tests, on the entire
system. These tests have significantly enhanced the stability of
AVS.

Live upgrade is the mean for serviceability. AVS needs live
upgrade capability to rapidly iterate functional features. As the
cloud vSwitch is a per-host component, the deployment task is
immense. We perform live upgrades daily to fix bugs and support
new features. Besides the synchronization of routing table entries,
we also need to pay special attention to the network “downtime”
during the switching procedure between the new and old AVS
processes. For each physical or virtual interface’s queue, there is
only one AVS process that can Tx/Rx packets each time. To avoid
traffic interruptions, we rely on traffic mirroring in the Pre-Processor
to send packets to both old and new AVS processes for “match-
action”. In this way, no matter before or after the switch between
the old and new AVS processes, there is a specific AVS process that
forwards packets for the VMs. According to our operational records,
the “downtime” of p999 VMs has been shortened to 100 ms.

Faster and more flexible resource scheduling on SmartNIC.
Nowadays, cloud hypervisor services of network, storage and com-
puting are all deployed on the SmartNIC (also known as DPU, IPU,
CIPU, etc.), and the resources (such as CPU cores and memory) are
always insufficient. But at the same time, we also observed that
these hypervisor services rarely achieve peak usage simultaneously.
So we implemented a dynamic resource allocation strategy for all
the hypervisor services.

Pay attention to data visualization. We have implemented com-
prehensive data collection at various stages in both the hardware
and software, encompassing logs, traffic statistics, and other rele-
vant indicators. The collected data will be regularly updated in an
analysis system to help us locate network issues and evolve our
systems. For example, through these statistics, our monitoring sys-
tem can provide a topology diagram of a pair of end-points in the
cloud network at any certain moment, along with the status of each
forwarding node in the network link. However, due to the limited
hardware resources in the “Sep-path”, we cannot complete all the
data collection tasks in the hardware data path (e.g. collecting RTT,
protocol, syn/rst/fin and other special statistics for each flow). The
good news is that Triton brings the hopes of collecting fine-grained
traffic statistics and developing more precise operational strategies.

Vendors and tenants can coordinate on operation and main-
tenance. In the host network, some failures or issues cannot be

avoided by just performing recovery operations on the vendor’s
side, such as the virtio queue hangs requiring the VM to reset the
device. We provided tenants with as many vNIC statistics or events
as possible for operation, which has been proven to make failover
more efficient. At the technical level, we are promoting digitization
capabilities through the virtio community to empower cloud ven-
dors to disclose as many network statistics and events as possible
to tenants inside the VMs based on virtio devices.

9 RELATED WORK

Hardware offloading architectures for vSwitch. Agilio CX [4]
and Broadcom Stingray SmartNICs [7] can use SoC CPU cores to
run software vSwitch, yet fail to sustain the growing bandwidth.
Some hardware-only schemes [28, 40, 41, 49] focus on offloading the
stateful packet processing pipeline to hardware. These schemes are
resource-consuming and support very few actions. Moreover, their
flexibility is limited by synthesis capability, making it inapplicable
to the cloud. The “Sep-path” architecture represented by Accel-
Net [37], ASAP? [6] and works in [5, 9, 12] employ a pipeline-based
programmable FPGA or embedded switch (eSwitch) integrated into
the NIC to implement virtual switching between virtual NICs. This
hardware integration allows them to offload a significant portion of
packet processing operations, resulting in high peak performance.
However, this approach fails to guarantee SLA in short-lived con-
nection scenarios and other unoffloadable scenarios. Triton, on the
other hand, is an improvement upon the “Sep-path” architecture
that ensures SLA through a unified data path, enabling AVS to
achieve high performance while maintaining flexibility. This paper
primarily focuses on the offloading acceleration architecture for
cloud vSwitch, specifically the deployment form of packet data
path within the SmartNIC. The discussion does not encompass the
offloading strategies, offloading programming systems, associated
domain-specific languages, or toolchains.

Application-specific hardware optimizations. The prior works
have optimized the NIC for NFV. nicmem [48] and RIBOSOME [59]
suggest that head-payload slicing can be used for shallow NFs to
increase performance. Triton uses a similar mechanism and refines
timeout mechanisms to avoid buffer exhaustion for differential
processing speed issues. Backdraft [58] points out that when the
number of NIC queues is substantial (over 1K), using user space dri-
vers inevitably incurs polling overhead (100 CPU cycles per queue).
Backdraft devises Doorbell Queues to solve the above problem,
but it will also introduce latency. In Triton, we use hardware to
aggregate a large number of virtio queues into the HS-rings (the
number of HS-rings is pinned as the number of CPU cores) to re-
duce latency, which is more efficient. Reframer [38] shows the great
benefit of aggregating flow-level packets to improve the memory
locality in the packet ring buffer. We have proved in Triton how
can this benefit be amplified by hardware assistance.

Versatile debugging and monitoring in Cloud Network. Previ-
ous work from cloud vendors illustrates the importance and com-
plexity of vSwitch as an endpoint for O&M in cloud networks.
Andromeda [33] has set up flexible components such as Tcpdump,
Stats exporter, Packet tracer, Latency sampler, etc. in vSwitch soft-
ware data path to get real-time network information. Large-scale

cloud monitoring [34, 63, 64] requires vSwitch software to collect
network information on end-to-end links with complex In-band
Telemetry (INT) messages. Some expressive network monitoring
tools [18, 62] support 100 Gbps traffic analysis on commodity hard-
ware at the expense of 4~8 x86 cores. However, installing these com-
ponents and mechanisms in the “Sep-path” architecture is hindered
by constraints (e.g., hardware programming flexibility, hardware
resources, and the performance of the NIC core). Triton, on the
other hand, places flexible and dynamic workloads on software,
enriching the debugging and troubleshooting methods with ease.

10 CONCLUSION AND FUTURE WORK

We present Triton, a flexible hardware offloading architecture for
AVS in Alibaba Cloud. Triton stands out from our prior “Sep-path”
architecture by striking a balance between performance, flexibility,
and operability through the unified data path and comprehensive
workload distribution model. We discuss the challenges faced dur-
ing the deployment of Triton and the corresponding techniques
employed to overcome them. The effectiveness of Triton has been
validated within Alibaba Cloud. Compared to the “Sep-path”, Triton
achieves almost twofold increase in CPS and reduces application-
level long-tail latency. Furthermore, Triton maintains unified perfor-
mance metrics and flexibility. We anticipate that Triton’s expertise
will be beneficial to the development of our next-generation Smart-
NICs, which are deeply customized for higher performance, low
power consumption and friendly programming.
This work does not raise any ethical issues.

ACKNOWLEDGEMENT

We sincerely thank all the anonymous reviewers and the shepherd
Robert Soulé for their valuable feedback and constructive sugges-
tions on improving this paper. This work was supported in part by
the National Key R&D Program of Zhejiang Province (2023R5202),
the National Natural Science Foundation of China (NSFC) under No.
62302441, and Alibaba Cloud through Alibaba Innovative Research
Program.

REFERENCES

(1]

[28]

[29]

[30]

[31]

[32

[33]

[n.d.]. BESS: Berkeley Extensible Software Switch. https://github.com/NetSys/
bess.

1981. Internet Control Message Protocol. RFC 777. https://doi.org/10.17487/
RFC0777

1983. The TCP Maximum Segment Size and Related Topics. RFC 879. https:
//doi.org/10.17487/RFC0879

2018. Virtual Switch Acceleration with OVS-TC and Agilio 40GbE SmartNICs.
https://www.netronome.com/media/documents/WP_OVS-TC_40G.pdf.

2020. HCL and Intel’s Open vSwitch acceleration solution. https:
//www.hcltech.com/sites/default/files/documents/inline-migration/hcls_
ovs_acceleration_solution_brief-1-8-2020.pdf.

2020. Mellanox ASAP2 Accelerated Switching and Packet Processing. https:
//metwork.nvidia.com/files/doc- 2020/sb-asap2.pdf.

2020. Using Stingray for OVS Offload. https://github.com/CCX-Stingray/Getting-
Started.

2021. Logging IP traffic using VPC Flow Logs. https://docs.aws.amazon.com/
vpc/latest/userguide/flow-logs.html.

2021. Virtual Switching Offload on FPGA-Based Alveo® SmartNICs. https://www.
xilinx.com/publications/solution-briefs/partner/vvdn- ovs-solution-brief.pdf.
2022. A Detailed Explanation about Alibaba Cloud CIPU. https:
//www.alibabacloud.com/blog/599183?spm=a3c0i.23458820.2359477120.3.
76806e9bESi3SD.

2022. Amazon Virtual Private Cloud Traffic Mirroring. https://docs.aws.amazon.
com/vpc/latest/mirroring/what-is- traffic-mirroring.html.

2023. Broadcom TRUFLOW™. https://www.broadcom.com/solutions/data-
center/cloud-scale-networking.

2023. Data Plane Development Kit. https://www.dpdk.org/.

2023. Intel® eASIC™ Devices. https://www.intel.com/content/www/us/en/
products/details/asics/easics.html.

2023. Nginx Web Server. https://www.nginx.com/.

2023. Overview of Flowlog. https://www.alibabacloud.com/help/en/virtual-
private-cloud/latest/flow-logs-overview.

2023. Redis. https://redis.io/.

2023. The Zeek Network Security Monitor. https://zeek.org/.

2023. Traffic mirroring overview. https://www.alibabacloud.com/help/en/virtual-
private-cloud/latest/traffic-mirroring-overview.

2024. Falcon. https://cloud.google.com/blog/topics/systems/introducing-falcon-
a-reliable-low-latency-hardware- transport.

2024. Iperf. https://iperf.fr/.

2024. Linux iptables. https://man7.org/linux/man-pages/mang/iptables.8.html.
2024. Linux Traffic Control. https://man7.org/linux/man-pages/man8/tc.8.html.
2024. Netfilter. https://www.netfilter.org/.

2024. Netperf. https://hewlettpackard.github.io/netperf/.

2024. Sockperf. https://github.com/Mellanox/sockperf.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-Scale Key-Value Store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE joint International Conference on
Measurement and Modeling of Computer Systems (London, England, UK) (SIG-
METRICS °12). Association for Computing Machinery, New York, NY, USA, 53-64.
https://doi.org/10.1145/2254756.2254766

Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,
Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. 2020. hXDP: Efficient Software
Packet Processing on FPGA NICs. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 973-990.
https://www.usenix.org/conference/osdi20/presentation/brunella

Qizhe Cai, Midhul Vuppalapati, Jachyun Hwang, Christos Kozyrakis, and Rachit
Agarwal. 2022. Towards ps Tail Latency and Terabit Ethernet: Disaggregating
the Host Network Stack. In Proceedings of the ACM SIGCOMM 2022 Conference
(SIGCOMM °22). Association for Computing Machinery, 767-779. https://doi.
org/10.1145/3544216.3544230

Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1-13. https://doi.org/10.1109/MICRO.2016.7783710
Sean Choi, Xiang Long, Muhammad Shahbaz, Skip Booth, Andy Keep, John
Marshall, and Changhoon Kim. 2017. PVPP: A Programmable Vector Packet
Processor. In Proceedings of the Symposium on SDN Research (Santa Clara, CA,
USA) (SOSR °17). Association for Computing Machinery, New York, NY, USA,
197-198. https://doi.org/10.1145/3050220.3060609

Alex Conta. 1995. Internet Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6). RFC 1885. https://doi.org/10.17487/RFC1885
Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,

[34

[35

(36

[38

(41

[42

[43

[44

[45

James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,
Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin
Vahdat. 2018. Andromeda: Performance, Isolation, and Velocity at Scale in
Cloud Network Virtualization. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, 373-387. https:
//www.usenix.org/conference/nsdi18/presentation/dalton

Chongrong Fang, Haoyu Liu, Mao Miao, Jie Ye, Lei Wang, Wansheng Zhang,
Daxiang Kang, Biao Lyv, Peng Cheng, and Jiming Chen. 2020. VTrace: Au-
tomatic Diagnostic System for Persistent Packet Loss in Cloud-Scale Over-
lay Network. In Proceedings of the ACM SIGCOMM 2020 Conference (Virtual
Event, USA) (SIGCOMM °20). Association for Computing Machinery, 31-43.
https://doi.org/10.1145/3387514.3405851

Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr, and Dejan
Kostic. 2021. PacketMill: toward per-Core 100-Gbps networking. In ASPLOS
"21: 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Virtual Event, USA, April 19-23, 2021, Tim
Sherwood, Emery D. Berger, and Christos Kozyrakis (Eds.). ACM, 1-17. https:
//doi.org/10.1145/3445814.3446724

Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN in
the Public Cloud. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), Aditya Akella and Jon Howell (Eds.). USENIX
Association, 315-328. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/firestone

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-
erated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). USENIX Association,
51-66. https://www.usenix.org/conference/nsdi18/presentation/firestone
Hamid Ghasemirahni, Tom Barbette, Georgios P. Katsikas, Alireza Farshin, Amir
Roozbeh, Massimo Girondi, Marco Chiesa, Gerald Q. Maguire Jr, and Dejan Kostic.
2022. Packet Order Matters! Improving Application Performance by Deliberately
Delaying Packets. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), Amar Phanishayee and Vyas Sekar (Eds.). USENIX
Association, 807-827. https://www.usenix.org/conference/nsdi22/presentation/
ghasemirahni

Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SSIGCOMM ’16). Association for Computing Machinery,
New York, NY, USA, 58-72. https://doi.org/10.1145/2934872.2934891

Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019.
The P4->NetFPGA Workflow for Line-Rate Packet Processing. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery,
1-9. https://doi.org/10.1145/3289602.3293924

Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High Performance Packet Processing with FlexNIC.
In Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’16). Association for
Computing Machinery, 67-81. https://doi.org/10.1145/2872362.2872367
Leonardo Linguaglossa, Dario Rossi, Salvatore Pontarelli, Dave Barach, Damjan
Marjon, and Pierre Pfister. 2019. High-speed data plane and network functions
virtualization by vectorizing packet processing. Computer Networks 149 (2019),
187-199. https://doi.org/10.1016/j.comnet.2018.11.033

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright. 2014. RFC 7348: Virtual EXtensible Local Area Network (VXLAN):
A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Net-
works.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve D.
Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena E. Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. 2019. Snap: a microkernel approach
to host networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, Tim
Brecht and Carey Williamson (Eds.). ACM, 399-413. https://doi.org/10.1145/
3341301.3359657

Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang
Cheng, Jiagi Gao, Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi, Binzhang
Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and Honggiang Harry Liu. 2022. From
luna to solar: the evolutions of the compute-to-storage networks in Alibaba cloud.
In Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands)

https://github.com/NetSys/bess
https://github.com/NetSys/bess
https://doi.org/10.17487/RFC0777
https://doi.org/10.17487/RFC0777
https://doi.org/10.17487/RFC0879
https://doi.org/10.17487/RFC0879
https://www.netronome.com/media/documents/WP_OVS-TC_40G.pdf
https://www.hcltech.com/sites/default/files/documents/inline-migration/hcls_ovs_acceleration_solution_brief-1-8-2020.pdf
https://www.hcltech.com/sites/default/files/documents/inline-migration/hcls_ovs_acceleration_solution_brief-1-8-2020.pdf
https://www.hcltech.com/sites/default/files/documents/inline-migration/hcls_ovs_acceleration_solution_brief-1-8-2020.pdf
https://network.nvidia.com/files/doc-2020/sb-asap2.pdf
https://network.nvidia.com/files/doc-2020/sb-asap2.pdf
https://github.com/CCX-Stingray/Getting-Started
https://github.com/CCX-Stingray/Getting-Started
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://www.xilinx.com/publications/solution-briefs/partner/vvdn-ovs-solution-brief.pdf
https://www.xilinx.com/publications/solution-briefs/partner/vvdn-ovs-solution-brief.pdf
https://www.alibabacloud.com/blog/599183?spm=a3c0i.23458820.2359477120.3.76806e9bESi3SD
https://www.alibabacloud.com/blog/599183?spm=a3c0i.23458820.2359477120.3.76806e9bESi3SD
https://www.alibabacloud.com/blog/599183?spm=a3c0i.23458820.2359477120.3.76806e9bESi3SD
https://docs.aws.amazon.com/vpc/latest/mirroring/what-is-traffic-mirroring.html
https://docs.aws.amazon.com/vpc/latest/mirroring/what-is-traffic-mirroring.html
https://www.broadcom.com/solutions/data-center/cloud-scale-networking
https://www.broadcom.com/solutions/data-center/cloud-scale-networking
https://www.dpdk.org/
https://www.intel.com/content/www/us/en/products/details/asics/easics.html
https://www.intel.com/content/www/us/en/products/details/asics/easics.html
https://www.nginx.com/
https://www.alibabacloud.com/help/en/virtual-private-cloud/latest/flow-logs-overview
https://www.alibabacloud.com/help/en/virtual-private-cloud/latest/flow-logs-overview
https://redis.io/
https://zeek.org/
https://www.alibabacloud.com/help/en/virtual-private-cloud/latest/traffic-mirroring-overview
https://www.alibabacloud.com/help/en/virtual-private-cloud/latest/traffic-mirroring-overview
https://cloud.google.com/blog/topics/systems/introducing-falcon-a-reliable-low-latency-hardware-transport
https://cloud.google.com/blog/topics/systems/introducing-falcon-a-reliable-low-latency-hardware-transport
https://iperf.fr/
https://man7.org/linux/man-pages/man8/iptables.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://www.netfilter.org/
https://hewlettpackard.github.io/netperf/
https://github.com/Mellanox/sockperf
https://doi.org/10.1145/2254756.2254766
https://www.usenix.org/conference/osdi20/presentation/brunella
https://doi.org/10.1145/3544216.3544230
https://doi.org/10.1145/3544216.3544230
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1145/3050220.3060609
https://doi.org/10.17487/RFC1885
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://doi.org/10.1145/3387514.3405851
https://doi.org/10.1145/3445814.3446724
https://doi.org/10.1145/3445814.3446724
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/firestone
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi22/presentation/ghasemirahni
https://www.usenix.org/conference/nsdi22/presentation/ghasemirahni
https://doi.org/10.1145/2934872.2934891
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1145/2872362.2872367
https://doi.org/10.1016/j.comnet.2018.11.033
https://doi.org/10.1145/3341301.3359657
https://doi.org/10.1145/3341301.3359657

[46

[47

[49

[50

[51

[52

[53

(54

[55

[56

[57

[58

[59

[60

[61

]

]

]

]

]

]

(SIGCOMM °22). Association for Computing Machinery, New York, NY, USA,
753-766. https://doi.org/10.1145/3544216.3544238

Michele Paolino, Nikolay Nikolaev, Jeremy Fanguede, and Daniel Raho. 2015.
SnabbSwitch user space virtual switch benchmark and performance optimization
for NFV. In IEEE Conference on Network Function Virtualization and Software
Defined Networks, NFV-SDN 2015, San Francisco, CA, USA, November 18-21, 2015.
IEEE, 86-92. https://doi.org/10.1109/NFV-SDN.2015.7387411

Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon,
and Martin Casado. 2015. The Design and Implementation of Open VSwitch. In
12th USENIX Symposium on Networked Systems Design and Implementation (NSDI
15) (NSDI'15). USENIX Association, 117-130.

Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. 2022. The Benefits
of General-Purpose on-NIC Memory. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’22). Association for Computing Machinery, 1130-1147. https:
//doi.org/10.1145/3503222.3507711

Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone,
Marco Spaziani Brunella, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano,
Antonio Capone, Michio Honda, and Felipe Huici. 2019. FlowBlaze: Stateful
Packet Processing in Hardware. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), Jay R. Lorch and Minlan Yu (Eds.). USENIX
Association, 531-548. https://www.usenix.org/conference/nsdi19/presentation/
pontarelli

Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Jan Gray, Michael
Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram
Lanka, Eric Peterson, Aaron Smith, Jason Thong, Phillip Yi Xiao, Doug Burger,
Jim Larus, Gopi Prashanth Gopal, and Simon Pope. 2014. A Reconfigurable Fabric
for Accelerating Large-Scale Datacenter Services. In Proceeding of the 41st An-
nual International Symposium on Computer Architecuture (ISCA). IEEE Press, 13-
24. https://www.microsoft.com/en-us/research/publication/a-reconfigurable-
fabric-for-accelerating-large-scale-datacenter-services/

Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: Congestion Signals Are Simple and Effective for Network
Load Balancing. In Proceedings of the ACM SIGCOMM 2022 Conference (Amster-
dam, Netherlands) (SIGCOMM °22). Association for Computing Machinery, New
York, NY, USA, 207-218. https://doi.org/10.1145/3544216.3544226

Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12). USENIX Association, Boston,
MA, 101-112. https://www.usenix.org/conference/atc12/technical-sessions/
presentation/rizzo

Luigi Rizzo and Giuseppe Lettieri. 2012. VALE, a switched ethernet for virtual
machines. In Conference on emerging Networking Experiments and Technologies,
CoNEXT ’12, Nice, France - December 10 - 13, 2012, Chadi Barakat, Renata Teixeira,
K. K. Ramakrishnan, and Patrick Thiran (Eds.). ACM, 61-72. https://doi.org/10.
1145/2413176.2413185

Luigi Rizzo, Giuseppe Lettieri, and Vincenzo Maffione. 2013. Speeding up packet
/O in virtual machines. In Symposium on Architecture for Networking and Com-
munications Systems, ANCS ’13, San Jose, CA, USA, October 21-22, 2013. IEEE
Computer Society, 47-58. https://doi.org/10.1109/ANCS.2013.6665175

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. SIGCOMM Comput.
Commun. Rev. 45, 4 (aug 2015), 123-137. https://doi.org/10.1145/2829988.2787472
Rusty Russell. 2008. virtio: towards a de-facto standard for virtual I/O devices.
SIGOPS Oper. Syst. Rev. 42, 5 (jul 2008), 95-103. https://doi.org/10.1145/1400097.
1400108

Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S. Berger, James C. Hoe, Aurojit
Panda, Justine Sherry, and Ren Wang. 2023. Enso: A Streaming Interface for NIC-
Application Communication. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23). USENIX Association, 1005-1025. https:
//www.usenix.org/conference/osdi23/presentation/sadok

Alireza Sanaee, Farbod Shahinfar, Gianni Antichi, and Brent E. Stephens. 2022.
Backdraft: a Lossless Virtual Switch that Prevents the Slow Receiver Problem. In
19th USENIX Symposium on Networked Systems Design and Implementation (NSDI
22), Amar Phanishayee and Vyas Sekar (Eds.). USENIX Association, 1375-1392.
https://www.usenix.org/conference/nsdi22/presentation/sanaee

Mariano Scazzariello, Tommaso Caiazzi, Hamid Ghasemirahni, Tom Barbette,
Dejan Kosti¢, and Marco Chiesa. 2023. A High-Speed Stateful Packet Processing
Approach for Tbps Programmable Switches. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). USENIX Association,
1237-1255. https://www.usenix.org/conference/nsdi23/presentation/scazzariello
Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A Cloud-
Optimized Transport Protocol for Elastic and Scalable HPC. IEEE Micro 40,
6 (2020), 67-73. https://doi.org/10.1109/MM.2020.3016891

William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. Revisiting the Open
VSwitch Dataplane Ten Years Later. In Proceedings of the 2021 ACM SIGCOMM

[62

[63

]

2021 Conference (SIGCOMM ’21). Association for Computing Machinery, 245-257.
https://doi.org/10.1145/3452296.3472914

Gerry Wan, Fengchen Gong, Tom Barbette, and Zakir Durumeric. 2022. Retina:
Analyzing 100GbE Traffic on Commodity Hardware. In Proceedings of the ACM
SIGCOMM 2022 Conference (SSIGCOMM °22). Association for Computing Machin-
ery, 530-544. https://doi.org/10.1145/3544216.3544227

Chengkun Wei, Xing Li, Ye Yang, Xiaochong Jiang, Tianyu Xu, Bowen Yang, Tao-
tao Wu, Chao Xu, Yilong Lv, Haifeng Gao, Zhentao Zhang, Zikang Chen, Zeke
Wang, Zihui Zhang, Shunmin Zhu, and Wenzhi Chen. 2023. Achelous: Enabling
Programmability, Elasticity, and Reliability in Hyperscale Cloud Networks. In Pro-
ceedings of the ACM SIGCOMM 2023 Conference (ACM SIGCOMM °23). Association
for Computing Machinery, 769-782. https://doi.org/10.1145/3603269.3604859
Yang Zhou, Ying Zhang, Minlan Yu, Guangyu Wang, Dexter Cao, Yu-Wei Eric
Sung, and Starsky H. Y. Wong. 2022. Evolvable Network Telemetry at Face-
book. In 19th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2022, Renton, WA, USA, April 4-6, 2022, Amar Phanishayee and Vyas
Sekar (Eds.). USENIX Association, 961-975. https://www.usenix.org/conference/
nsdi22/presentation/zhou

https://doi.org/10.1145/3544216.3544238
https://doi.org/10.1109/NFV-SDN.2015.7387411
https://doi.org/10.1145/3503222.3507711
https://doi.org/10.1145/3503222.3507711
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://www.microsoft.com/en-us/research/publication/a-reconfigurable-fabric-for-accelerating-large-scale-datacenter-services/
https://www.microsoft.com/en-us/research/publication/a-reconfigurable-fabric-for-accelerating-large-scale-datacenter-services/
https://doi.org/10.1145/3544216.3544226
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://doi.org/10.1145/2413176.2413185
https://doi.org/10.1145/2413176.2413185
https://doi.org/10.1109/ANCS.2013.6665175
https://doi.org/10.1145/2829988.2787472
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://www.usenix.org/conference/osdi23/presentation/sadok
https://www.usenix.org/conference/osdi23/presentation/sadok
https://www.usenix.org/conference/nsdi22/presentation/sanaee
https://www.usenix.org/conference/nsdi23/presentation/scazzariello
https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1145/3452296.3472914
https://doi.org/10.1145/3544216.3544227
https://doi.org/10.1145/3603269.3604859
https://www.usenix.org/conference/nsdi22/presentation/zhou
https://www.usenix.org/conference/nsdi22/presentation/zhou

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Apsara vSwitch (AVS)
	2.2 The Evolution of AVS Acceleration
	2.3 Deployment Issues

	3 Triton Design Overview
	3.1 Design Overview
	3.2 The Advantages in Triton

	4 Triton Packet Pipeline
	4.1 AVS Workload Model
	4.2 Packet Pipeline in Triton
	4.3 Potential Performance Issues

	5 Performance Optimization
	5.1 Packet Rate Improvement
	5.2 Bandwidth Improvement

	6 Implementation
	7 Evaluation
	7.1 Overall System Evaluation
	7.2 Acceleration Techniques Evaluation
	7.3 Application Performance

	8 Experience
	8.1 Deployment Experiences
	8.2 Lessons Learned

	9 Related Work
	10 Conclusion and Future Work
	References

