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1 INTRODUCTION
The vSwitch, as a critical component for Virtual Machine (VM)
network connectivity in cloud environments, has prompted increas-
ing attention towards its forwarding performance. While software
optimization schemes have limitations in meeting the expanding
network capacity demands [11, 12, 15, 17, 18], hardware offloading
architectures leveraging SoC, FPGA, and ASIC have been proposed
to transfer the match-action workload [1, 3, 6, 7, 13, 16], addressing
the growing need for network capacity.

However, the existing hardware offloading solutions introduce
a redundant datapath to the software vSwitch, creating new chal-
lenges. For instance, the VFP offloading solution [13] and OVS-
DPDK offloading solution based on Mellanox ASAP2 [1] divide the
packet forwarding process into two separate datapaths: the software
path, which handles complete packet processing, and the hardware
path, which accelerates packet matching as a cache for the software
path. We use the term off-path model to refer to these solutions
that distinguish software and hardware paths based on the hotness
of the flow. However, the two datapaths in off-path model are not
comparable in terms of performance and both require maintenance
to support incoming services. This presents challenges for Cloud
Service Providers (CSPs) in the following aspects:

Performance: Hardware offloading solutions enhance vSwitch
forwarding capacity but introduce unpredictable VM network expe-
rience. The significant performance gap between the two datapaths
(the software path and the hardware path) results in the varied
treatment of network traffic, compromising VM network Service
Level Agreement (SLA) guarantees. Specific scenarios like short
connections or routing rule refreshes worsen the network expe-
rience. Moreover, resource consumption on SmartNICs or DPUs
doubles with both datapaths, reducing concurrent connections and
vNIC density originally supported by the vSwitch.

Flexibility: Flexibility plays a critical role in enabling the con-
tinuous delivery of cloud services. However, it faces challenges
stemming from hardware development and resource constraints.
Firstly, we observed that relying solely on the OpenFlow network
programming model[14] is insufficient to support new services
comprehensively. For example, advanced functionalities, like traffic
mirroring[5, 9] and Flowlog[2, 8], necessitate expanding matching
fields and actions, adding development complexity. Engineers must
now navigate designing functions across two datapaths, leading to
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Figure 1: The architecture of Triton

longer development cycles. Secondly, the existing architecture am-
plifies operation and maintenance costs due to system complexity
and longer call chains.

To address these challenges, we present Triton, a novel hard-
ware accelerated vSwitch system that leverages hardware assistance
rather than bypassing software. Triton aims to offload I/O and
memory-intensive tasks to FPGA units while preserving high flexi-
bility tasks, such as action execution, within the software domain.
By adopting this approach, Triton ensures guaranteed network Ser-
vice Level Agreements (SLAs) and predictable performance through
a unified datapath. Additionally, we introduce optimization meth-
ods like header-payload slicing and packet aggregation to enhance
CPU-based software forwarding capacity through vectorization.
The deployment of Triton in Alibaba Cloud validates its effective-
ness. Evaluations demonstrate that compared to existing hardware
offloading architectures, Triton achieves nearly a two-fold increase
in Connections Per Second (CPS) with a minimal latency increase
of only 10𝜇𝑠 . Furthermore, Triton maintains unified performance
metrics and flexibility.

2 SYSTEM DESIGN
2.1 Design Overview
Triton’s core principle is integrating hardware and software within
a unified datapath to ensure consistent performance metrics. How-
ever, a crucial challenge lies in effectively splitting and distributing
packet processing loads among different processing units.

In Triton, workload distribution is determined through instruction-
level analysis of the three stages involved in packet processing: pars-
ing, classification, and action. The vSwitch datapath architecture of
Triton is illustrated in Figure 1. The parsing stage, characterized by
intensive memory access and jump instructions, is implemented as
a pre-processing module in hardware units to alleviate the burden
on the CPU. Hardware acceleration is used for best-effort acceler-
ation in the classification stage, with intermediate data passed to
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Figure 4: Predictable performance

software as metadata for faster packet matching. Action execution,
requiring high flexibility, is fully implemented in software on the
CPU to allow for quick modifications.

Triton offers the advantage of maintaining consistently high
performance while preserving flexibility comparable to pure soft-
ware solutions. Furthermore, Triton enhances fine-grained moni-
toring and debugging capabilities, addressing limitations observed
in existing hardware offloading solutions, including features like
comprehensive traffic statistics and real-time hooks.

2.2 Optimization Techniques
To overcome the shortcomings of software processing and improve
the upper limit of performance in Triton, we design the following
optimization techniques:

Overcome software forwarding capacity bottleneck: (1)
Header-payload slicing: To alleviate the software forwarding ca-
pacity bottleneck, Triton implements header-payload slicing. The
pre-processor slices packets into headers and payloads, as most
vSwitch workloads primarily operate on headers. By efficiently
storing payloads in a dedicated payload buffer, Triton minimizes
PCIe traffic and enables higher bandwidth capacities. For actions
that require access to the payload (e.g., encryption and fragmen-
tation), the software will instruct the hardware’s post-processor to
perform corresponding operations on payloads, according to the
directives in the instr field of re-injected packets. (2) Packet aggre-
gation: Triton employs packet aggregation to enhance software
processing efficiency. Packets belonging to the same flow are aggre-
gated in hardware and processed in batches by CPUs. CPUs can use
SIMD instructions for vectorized processing like [10], resulting in
improved packet rate, reduced cache miss rate, and lower software
processing latency.

Minimize the interaction between software and hardware:
(1) Implicit hardware updates: To mitigate CPU overhead in hard-
ware synchronization, Triton employs implicit hardware updates.
The CPU can insert pre/post-processing rules into the instr field
of re-injected packets, allowing the hardware to update functions
after resolving the issued rules; (2) Lightweight rules recycling: Tri-
ton delegates the management of the processing pipeline to the
hardware to minimize the overhead of software-driven recycling
of pre/post-processing rules. The hardware initiates the recycling
process if a specified threshold is exceeded. This approach reduces
software overhead and enhances efficiency.

3 PRELIMINARY EVALUATION
Triton is developed and deployed in Alibaba Cloud Infrastructure
Processing Unit (CIPU) [4], with only 4 CPU cores and a small
number of LUT units are used.

Triton Performance: Figure 2 presents a performance compari-
son among the software vSwitch (SW), vSwitch accelerated with off-
path model, and Triton. By implementing the techniques discussed
in Section 2.2, Triton achieves throughput comparable to that of
off-path model. Regarding packet rate, Triton demonstrates a more
than twofold improvement compared to SW solutions. Although
Triton introduces a nominal latency difference of approximately
10𝜇𝑠 , as shown in Figure 3, compared to the off-path model, its
impact is negligible for most typical cloud workloads, like MySQL
and Redis, that typically have latencies around 10𝑚𝑠 . Furthermore,
Triton offers predictable high performance in multiple dimensions
and increased flexibility, providing significant advantages.

Predictable Performance: Figure 4 illustrates the packet rate
variation over a duration of 100 seconds for different offloading
models, all initially supporting 2 million connections. At 20s, we
update the routing rules in the vSwitch. The off-path model exhibits
substantial performance deterioration, with a decline of approxi-
mately 75% in scenarios involving frequent rule changes, lasting up
to 50 seconds. In contrast, Triton utilizes the mechanisms outlined
in Section 2.2 to alleviate the strain on the CPU and install new rules
through the data plane. As a result, Triton experiences only a 25%
performance decrease for approximately 5 seconds. This demon-
strates Triton’s capability to deliver tenants a more predictable
performance.
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