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ABSTRACT
Cloud computing has witnessed tremendous growth, prompting
enterprises to migrate to the cloud for reliable and on-demand
computing. Within a single Virtual Private Cloud (VPC), the num-
ber of instances (such as VMs, bare metals, and containers) has
reached millions, posing challenges related to supporting millions
of instances with network location decoupling from the underlying
hardware, high elastic performance, and high reliability. However,
academic studies have primarily focused on specific issues like
high-speed data plane and virtualized routing infrastructure, while
existing industrial network technologies fail to adequately address
these challenges.

In this paper, we report on the design and experience of Ach-
elous, Alibaba Cloud’s network virtualization platform. Achelous
consists of three key designs to enhance hyperscale VPC: (𝑖) a novel
hierarchical programming architecture based on the collaborative
design of both data plane and control plane; (𝑖𝑖) elastic performance
strategy and distributed ECMP schemes for seamless scale-up and
scale-out, respectively; (𝑖𝑖𝑖) health check scheme and transparent
VM live migration mechanisms that ensure stateful flow continu-
ity during the failover. The evaluation results demonstrate that,
Achelous scales to over 1, 500, 000 of VMs with elastic network ca-
pacity in a single VPC, and reduces 25× programming time, with
99% updating can be completed within 1 second. For failover, it
condenses 22.5× downtime during VM live migration, and ensures
99.99% of applications do not experience stall. More importantly,
the experience from three years of operation proves the Achelous’s
serviceability, and versatility independent of any specific hardware
platforms.
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1 INTRODUCTION
Cloud computing has grown consistently over the years [6, 35],
and the promising new cloud services (e.g., serverless comput-
ing [40, 46], AI training [38, 52], and digital office [36]) have rein-
forced this trend. Large-scale enterprises migrate their businesses
to the cloud, seeking flexible scalability in response to changing
business demands, which often results in network peak-to-valley
phenomena. Simultaneously, tenants expect network services in
the cloud to be as reliable as physical hardware. These comprehen-
sive demands pose significant challenges in the design of cloud

∗Co-first authors □Co-corresponding authors

2018 2019 2020 2021 2022
Time (year)

0

50

100

150

V
P

C
S

ca
le

(1
04 )

Figure 1: Alibaba e-commerce VPC scale expansion over the
years.

networks. However, academic studies mainly focus on specific is-
sues such as high-speed data plane [48, 49] and virtualized routing
infrastructure [31, 41], while existing industrial network technolo-
gies struggle to adequately support hyperscale cloud networks. For
example, Andromeda [14] presents Hoverboard to provide high per-
formance, isolation, and velocity at scale in Google cloud network
virtualization. Nevertheless, these technologies are insufficient in
addressing the more significant challenges of network scalabil-
ity and bursty performance posed by modern cloud applications.
Our experiences have taught us the importance of integrating a
cohesive system and distributing functionality across network in-
frastructures, such as controllers, gateways, and vSwitches. In the
following, we highlight three primary challenges encountered in
modern cloud environments.
Challenge 1: Sub-second reconfiguration time when serving
millions of concurrent instances. The first significant chal-
lenge stems from the migration of e-commerce businesses (e.g.,
Taobao [5]) to the cloud, leading to the deployment of a vast num-
ber of instances (e.g., VMs, bare metals, and containers) within a
single Virtual Private Cloud (VPC). Figure 1 illustrates a prime ex-
ample of the exponential growth of Alibaba’s e-commerce instances
within a single VPC, reaching 1,500,000 instances in 2022. The hy-
perscale network exhibits two key characteristics: high deployment
density and frequent creation/destruction of instances. For example,
during traffic peaks, we may need to initiate an additional 20,000
container instances, each having a lifecycle of only a few minutes.

The existing network programming methods are not equipped
to handle the creation and readiness of such an enormous number
of instances concurrently. For example, Andromeda [14] presents a
design to scale 100,000 instances in the paper, and AWS supports
up to 256,000 instances per VPC according to the latest report [3].
However, within Alibaba Cloud, the number of instances that need
to be supported is an order of magnitude higher than any existing
technology can accommodate. The proliferation of these hyper-
scale VPCs leads to a substantial increase in routing entries and a
high frequency of network changes, thereby challenging the net-
work convergence rate. Specifically, the cloud vendors must provide
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services within a limited timeframe, such as the ability to launch
numerous serverless containers with ready network connectivity
within 1 second.

Challenge 2: High elastic network for heavy-traffic middle-
box deployment. The second significant challenge arises from
migrating traditional heavy-load network applications, such as mid-
dleboxes, to virtual machines (VMs) in the cloud. Initially, these
middleboxes (e.g., load balancer, NAT gateway, and firewall) were
deployed on dedicated hardware within the physical network. Mi-
grating them to the cloud offers elasticity and enterprise cost opti-
mization advantages. However, this transition disrupts the isolation
provided by the originally dedicated devices, potentially leading to
resource contention (both network and CPU resources) with other
instances co-located on the same host. Furthermore, the middlebox
VMsmust exhibit elastic scalability (both scaling up and scaling out)
to effectively handle variable traffic pressures, as their customers’
capacity demands are subject to change.

Unfortunately, existing studies [8, 11, 22, 27, 45] fail to account
for resource competition and are thus unsuitable for providing
isolated yet elastic resource allocation on multi-tenant cloud hosts.
In terms of scale-out scenarios, load-balance approaches [15, 55] and
traditional Equal-Cost Multi-Path (ECMP) routing mechanisms [9,
37] introduce new bottlenecks. The centralized load balancers and
ECMP forwarding nodes emerge as primary limiting factors in
network scalability, as they handle traffic originating from millions
of source VMs.
Challenge 3: High cloud serviceability and reliability. For
cloud vendors, resource utilization and reliability serve as crucial
indicators of a cloud platform. However, in the cloud network,
detecting failures and achieving fast failover present significant
challenges. The dynamic mapping between the virtual network and
physical devices makes it difficult to establish a precise topology,
which in turn hampers failure telemetry. Existing failure teleme-
try technologies [8, 11, 22, 27, 32, 34, 45] either focus on physical
networks or lack real-time capabilities, thus failing to guarantee
reliability in the virtual network. Compounding the issue, most live
migration technologies [28, 30, 53] disregard the traffic continuity
of stateful flows, resulting in disruptions to tenant services.

With the above challenges in mind, we set out to re-architect
our network architecture three years ago. We identify that current
network components (i.e., controller, gateway, and vSwitch) cannot
independently meet these requirements. Leveraging insights from
both the control and data planes, we propose Achelous, Alibaba
Cloud’s network virtualization platform that offers programma-
bility, elasticity, and reliability in hyperscale cloud networks. We
focus on introducing three main design choices that build on our
extensive operational experience.

First, to solve the challenge of the larger forwarding table and
slower convergence rate, we propose a novel programming mech-
anism, which is actively learning the forwarding information on
demand from the gateway instead of the controller. The controller
only needs to offload network rules to the gateway instead of the
vSwitch on each host (§4.1). We also design a lightweight forward-
ing cache with effective management on IP granularity, so as to
further narrow down the table structure (§4.3). Second, to achieve
scalability within the host while ensuring performance isolation, we

propose a novel elastic strategy that balances the isolation and the
burst traffic, and achieves high utilization of bandwidth and CPU
resources (§5.1). Moreover, we demonstrate a distributed ECMP
mechanism redirecting traffic to multiple vSwitches to enable seam-
less scale-out of services among hosts (§5.2). Third, we present a
link health check scheme to validate the network link status among
vSwitch and VMs, along with a monitor to detect the status of
vSwitch itself (§6.1). Furthermore, we introduce a series of transpar-
ent VM live migration techniques, including traffic redirect, session
reset, and session sync. These techniques condense VM migration
downtime, supporting the continuity of both stateless and stateful
flows with applications’ unawareness (§6.2).

Our deployment and evaluation results validate the efficacy of
these design choices. Achelous has acted as the cornerstone of
Alibaba’s VPC network stack for years. It significantly improves
the user-perceivable experience. Notably, 99% of services exhibit
a startup delay of less than 1 second, while 99.99% of applications
experience no stalls. After years of operation, we believe that the
design choices of Achelous are not only feasible but also highly
effective, and the lessons learned (§8) can be broadly applied to
other cloud vendors.

Thus this paper makes the following contributions:

• We propose a novel on-demand active learning program-
ming mechanism with an optimized table structure to speed
up the network coverage for hyperscale VPCs. The VPC
with more than 1.5 million VM instances can complete the
configuration coverage within 1.33𝑠 . Compared with tradi-
tional deployment patterns, our mechanism improves the
configuration convergence time by more than 25x.
• We present an elastic network capacity strategy and dis-
tributed ECMP mechanism, which supports scale-up on the
premise of isolation and seamless scale-out among hosts. For
the heavy-loaded services, we support seamless expansion
and contraction within 0.3𝑠 .
• We design a whole failure detection and avoidance mecha-
nism for VMs, which includes abundant health check meth-
ods and seamless live-migration schemes. With these mecha-
nisms, VM’s failover latency is in the order of 100𝑚𝑠 , without
impacting applications inside the guest VM.

2 BACKGROUND AND MOTIVATION
Achelous is Alibaba Cloud’s network virtualization platform, which
has evolved over the past decade to support Alibaba Cloud’s virtual
networks. It has undergone significant improvements in perfor-
mance through the phases of Achelous 1.0 and Achelous 2.0. As
cloud networks continue to scale, new challenges have arisen, lead-
ing us to enhance and iterateAchelous 2.0. In this section, we discuss
the evolution of Achelous, the VM network datapath in Achelous
2.0, and the new challenges.

2.1 The role of Achelous in Alibaba Cloud
In Alibaba Cloud, Achelous provides VM network virtualization
via three fundamental components (shown in Figure 2): the SDN
controller on the control plane, the vSwitch and gateway on the
data plane.
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Figure 2: Achelous in Alibaba Cloud

On the control plane, the controller manages all the network
configurations during the instance (e.g., VM, bare metal) life cycles,
and issues network rules into vSwitch and gateway. For example,
once a VM instance (say VM1) is created, the controller will issue all
existing VM1’s network forwarding information into the vSwitch
and gateway. Then, if the VM1’s network changes (such as migrat-
ing to another host, a new network card is mounted), the controller
will update and correct the corresponding rules in the data plane.

On the data plane, the vSwitch serves as a per-host switching
node dedicated to VM traffic forwarding. The gateway, acting as a
higher-level forwarding component, facilitates interconnection be-
tween different domains. In Figure 2, we provide an example: when
VM1’s packet is processed by the vSwitch, it determines the appro-
priate destination. If the destination VM is on the same host as VM1
(e.g., VM2), the vSwitch directly forwards the packets. Otherwise,
if the destination VM is on a different host (e.g., bare metal), the
packets are relayed through the gateway. For more details about the
gateway, please refer to Sailfish [42], which supports deployment
on various hardware platforms.

2.2 The Evolution of Achelous
The development of Achelous began over ten years ago with its
initial version, Achelous 1.0, providing the foundational virtual
network environment for Alibaba Cloud. Since it was developed
earlier than the formulation of the VXLAN standard [39], Achelous
1.0 experienced the architecture transformation from the classic
layer-2 network to the standard VPC overlay network. This evolu-
tion enhanced security by enabling layer-2 isolation of guest VMs
through VXLAN Network Identifier (VNI). However, Achelous 1.0
faced performance challenges due to its data plane relying on the
netfilter [4] in the Linux kernel, which is always the bottleneck of
network processing.

In Achelous 2.0, data plane performance has been significantly
improved through Data Plane Development Kit (DPDK) [2] ac-
celeration and hardware offloading. These acceleration methods
effectively reduce the packet copying overhead on the datapath,
which is critical to the forwarding performance. Additionally, the
optimization in Achelous 2.0 involves offloading east-west traffic
(VM-VM traffic) to alleviate potential bottlenecks. Since the east-
west traffic constitutes over 3/4 of the total traffic, relying on the
gateway for relaying can introduce noticeable bottlenecks. In Ache-
lous 2.0, the controller issues all the east-west rules to the vSwitches,
so that the vSwitch can forward east-west traffic via direct path
(see Figure 2). Nevertheless, it will cause the challenge1 (in §2.4)
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Figure 3: VM network datapath in Achelous 2.0

because each vSwitch should be notified of the correct rules when
the network changes.

2.3 The VM network datapath in Achelous 2.0
To provide insight into the platform, we briefly introduce the key
procedures and data structures on the VM network datapath of
Achelous 2.0.

The VM network datapath of Achelous 2.0 (Figure 3) consists of
two parts: the slow path and the fast path. The slow path encom-
passes a packet processing pipeline consisting of various tables,
each serving a specific function. These tables include the Access
Control List (ACL), Quality of Service table (QoS), the VXLAN
Routing Table (VRT), VM-HOST mapping table (VHT) (i.e., vm_ip-
host_ip mapping relationship) and so on. All tables are configured
by the controller, with VHT being particularly crucial. As the num-
ber of VMs escalates within the VPC, the VHT encounters signifi-
cant expansion, resulting in a surge of entries.

As for the fast path, we first introduce a new data structure
called session, consisting of a pair of flow entries in two directions
(i.e., oflow for the original direction and rflow for the reverse di-
rection) and all the states needed for packet processing. The flow
entry contains five-tuple of a packet and adopts the exact matching
algorithm. The packet processing procedures are as follows: 1) the
first packet is processed through the pipeline of the slow path; 2)
then a five-tuple flow entry and its session will be generated and
re-injected into the fast path; 3) subsequent packets can be directly
matched and processed on the fast path.

The performance gap between the fast path and slow path in
Achelous 2.0 is significant, with the fast path exhibiting a perfor-
mance advantage of 7-8 times over the slow path. This results in
varied network-dedicated CPU consumption and performance for
packets from different flows. For example, VMs with short-lived
connections may monopolize up to 90% of vSwitch CPU resources,
impacting other VMs. This intensifies the challenge2 (in §2.4).

Moreover, the demand for hyperscale VPC networks amplifies
the challenges posed by perceived design “flaws” in the data plane
and control plane of Achelous 2.0, particularly in adapting to new
service scenarios like e-commerce and middlebox migration to the
cloud.

2.4 Challenges to Achelous 2.0
Compared with the limited VPC network scale managed by cloud
vendors, the new scenarios under hyperscale deployment bring
three severe challenges:
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Figure 4: Unpredictable network capacity demands

(1) Larger Routing Tables and Slower Convergence Rate. One
of the most critical considerations is control plane scalability. On
the one hand, the expansive nature of large networks necessitates
larger routing tables, such as VHT and VRT, resulting in increased
memory consumption on resource-constrained hosts or Cloud In-
frastructure Processing Units (CIPUs) [1]. For example, in Alibaba
Cloud, VPCs can accommodate over 1.5 million VMs, thereby lead-
ing to a substantial number of table entries and consuming multiple
gigabytes of memory for efficient packet forwarding. On the other
hand, there is the matter of managing the high volume of concur-
rent entry change requests. Our empirical analysis reveals that the
control plane receives more than 100 million network change re-
quests per day. The significant influx of requests challenges network
convergence, a crucial factor for autoscaling and failover.
(2) Balancing Idle Resources and Burst Traffics on Fairness
and Isolation. With the increasing deployment density of VMs,
there is an urgent need for elastic network capabilities. An analysis
conducted in Alibaba Cloud reveals the following findings: 1) the
average throughput of over 98% of VMs is below 10Gbps, indicating
significant network resource idleness (see Figure 4a); 2) however,
network bursting occurs daily, leading to competition for bandwidth
and CPU resources in the data plane (see Figure 4b1). For instance,
online meeting services experience traffic bursts during work hours
while requiring minimal bandwidth during breaks. To balance idle
resources and burst traffic, achieving high elasticity becomes imper-
ative in resource allocation while upholding fairness and isolation.
Moreover, traffic-heavy tenants demand seamless scaling out capa-
bilities across multiple hosts when facing flow floods.
(3) Detecting Network Risks and Escaping with Tenant Un-
awareness. With the increasing complexity of VPC network con-
figurations, ensuring high network reliability is crucial. Tradition-
ally, network operations and maintenance heavily rely on human
intervention, resulting in a lack of predictive failure capabilities. Net-
work failures tenants report often entail significant time and effort
to locate and resolve. Although we have developed various network
failure localization technologies [16], advanced preemptive failure
detection remains a challenge. In the context of hyperscale VPCs,
adopting network risk awareness approaches becomes increasingly
crucial for early failure detection and avoidance, enabling uninter-
rupted service delivery to tenants. Furthermore, transparent live
migration technology is critical in ensuring traffic continuity when
assisting tenant VMs in transitioning from faulty hosts or networks.

The above challenges motivate us to rethink the design of data
plane and control plane in Achelous, and make new innovations.

1We counted the hosts that data plane CPU usage exceeding 90% in typical regions
during one day. The figure has been normalized.

3 DESIGN OVERVIEW
To tackle the challenges posed by scale explosion, we propose
innovative designs and advancements in Achelous 2.1. Departing
from the principle of over-optimization for individual components,
we explore synergistic collaborations between the data plane and
the control plane. The three key improvements are as follows:
Hyperscale Network Programmability. In order to reduce the
network convergence time and improve the memory efficiency,
we propose an active learning mechanism (§4.1) in Achelous 2.1. In
this mechanism, the vSwitch only manages a forwarding cache
and actively learns route information from gateways via a Route
Synchronization Protocol (RSP). So the controller only needs to
program network for the gateway, rather than each vSwitch node.
This approach enables rapid network updates through the high-
performance data plane and ensures synchronization to affected
vSwitches with minimal convergence time. As a result, we avoid
storing complete forwarding information on every host, which
improves per-server memory utilization and scalability by over an
order of magnitude.
Elastic Network Capacity. Achelous conducts seamless scale-up
and scale-out methods to achieve high elastic network performance
based on isolation. In the data plane, network capacity is provided
through the dedicated CPU cores, necessitating the consideration
of all available resources. Achelous 2.1 adopts elastics strategy (§5.1)
to allocate both bandwidth and CPU resource for all the VMs within
a host, which not only makes full use of idle resources for bursty
traffic but also guarantees performance isolation. Additionally, to
provide seamless service expansion among hosts, we implement
a distributed ECMP mechanism (§5.2) in each vSwitch (the edge
node of Achelous), eliminating forwarding bottlenecks associated
with centralized deployment in the underlay network.
Network Risk Awareness and Live Migration. Achelous per-
forms network link health checks to active perception and early
warning faults such as network congestion or VM halt (§6.1). This
involves vSwitches sending periodic health check packets to VMs
based on a pre-configured checklist. Simultaneously, the vSwitch it-
self reports performance statistics to the controller, enabling active
intervention to mitigate network risks. Once the risks are detected,
the vSwitch provides transparent VM live migration for failover
under the controller’s guidance. During migration, Achelous imple-
ments the traffic redirect, the session reset, and the session copy
technologies (§6.2) to fulfill the network properties (such as low
downtime, stateless flows, stateful flows, and application unaware-
ness) for uninterrupted service.

4 HYPERSCALE NETWORK PROGRAMMING
In this section, we present the designs of Achelous 2.1 that target
the first challenge in §2.4. We detail our programming mechanism
developed for hyperscale cloud networks, named Active Learning
Mechanism (ALM).

4.1 Design of Active Learning Mechanism
Problem & Goal. High memory consumption remains a critical
challenge for large-scale forwarding tables. In software forward-
ing architectures [17, 43], vSwitches share the memory with VMs,
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Figure 5: Active Learning Mechanism

resulting in significant memory usage for in-memory hyperscale
forwarding entries, potentially straining host memory resources. In
hardware-accelerated architectures [18, 44], the limitations of avail-
able high-speed on-chip memory on dedicated hardware further
exacerbate the memory resource constraints. Even worse, when
the large-scale forwarding tables encounter high concurrent net-
work change requests, the controller cannot notify each affected
vSwitch in time and thus will become a bottleneck. Thus, we aim to
develop an effective programming mechanism in Achelous to serve
the hyperscale network.
Insight. Our key observation is that data center networks un-
dergo constant changes to handle failures, deploy/upgrade services,
and adapt to traffic fluctuations. Consequently, the locations of
VMs or containers may change frequently due to VM migration,
failures, and creation/release events. Specifically, the Virtual Rout-
ing Table (VRT) and VM-Host mapping table (VHT) experience
high-frequency updates. On the other hand, configuration tables
on the vSwitch, such as ACL and QoS, change less frequently. For
example, tenant security group configurations remain relatively
stable, while the VHT undergoes updates during service expansion
and contraction. Thus, we can shift the frequently changed table
to the powerful gateway so as to reasonably reduce the resource
consumption of vSwitch and improve the overall efficiency.
Design Overview. We continue to iterate on our Achelous design
based on long-term production experience and observation as a
cloud vendor. The ALM is our latest move towards hyperscale VPC
for supporting millions of VMs. As shown in Figure 5, the ALM
entails modification on all three core components in Achelous. The
core idea of ALM is to free the controller from the heavy load of
issuing network changes, and let vSwitch actively synchronize for-
warding rules via the gateway on demand. Accordingly, we design:
1) a light-weight forwarding table, named as Forwarding Cache (FC)
table for higher storage efficiency; 2) an on-demand forwarding
rules synchronization mechanism for faster convergence.

4.2 Light Weighted Forwarding Table with
Hierarchy Packet Processing Paths

Light Weighted Forwarding Table. We introduce a lightweight
Forwarding Cache (FC) table for efficient software switching. In-
stead of relying on explicit VRT/VHT entries, the vSwitch utilizes

the compact "Dst IP -> Next Hop" mappings learned from gateways.
First, the IP-based entries are more compact and can cover larger
traffic because multiple flows of each VM-VM pair may reuse only
one entry. We can reduce the flow table entries of different port
numbers to a single IP entry, which may be 65535 times less stor-
age in extreme cases. Second, by shifting from a flow-based table
to an IP-based table, we address the vulnerability to Tuple Space
Explosion (TSE) attack, which is a denial-of-service attack against
the software packet classifier [13].
Hierarchy Packet Processing Paths. As shown in Figure 5, upon
parsing the packet’s Dst IP of the VXLAN inner header, the subse-
quent packet processing follows the hierarchy paths: 1) Fast path:
the fast path keeps the same as in §2.3, and acts as a service-logic-
irrelevant acceleration path for high performance. The unmatched
packets in the fast path will be upcalled to the slow path; 2) Slow
path: the original VHT and VRT on the slow path (see §2.3) are
replaced by FC, but the ACL and QoS tables are still preserved. For
management, the slow path updates FC table entries on demand
from the gateway to get a local small table, which only requires
a small storage space. Specifically, the slow path looks up the FC
according to the “Dst IP” of each packet. If cache misses, packets
will be upcalled to the gateway 1○, and eventually forwarded to
the destination 2○. While the packets that hit in the FC will be
re-injected to the fast path and routed directly 3○.

The hierarchical packet processing design in Achelous simpli-
fies the forwarding table structure and the packet processing logic
within the vSwitch. By leveraging the gateway to store and manage
the complete set of forwarding rules, the vSwitch can synchronize
entries on demand, significantly reducing the storage overhead
for each vSwitch node. This design approach also decouples the
vSwitch from intricate routing logic, resulting in improved forward-
ing performance, enhanced versatility, and simplified maintenance.

4.3 On-Demand Forwarding Rules
Synchronization Mechanism

Active Traffic-driven Learning From the Gateway. In addi-
tion to its role in the data plane, the gateway in our architecture
also functions as a forwarding rule dispatcher in the control plane.
The vSwitch nodes learn the forwarding rules on demand from
the gateway via the Route Synchronization Protocol (RSP), our
in-house-designed protocol. As shown in Figure 6, RSP has two
types of packets: request and reply. The request packet contains
flow’s five-tuple, and the reply packet contains the next hops for
the corresponding request. vSwitch determines whether to learn
rules or directly send traffic to gateway based on factors such as
flow duration, throughput, etc. When the vSwitch needs to learn a
rule, it constructs an RSP request packet and sends it to the gateway.
Then the gateway parses the request, collects specific rules, and
writes to the reply packet. Upon receiving the reply, the vSwitch
inserts the corresponding entries into the Forwarding Cache (FC).
Synchronization Frequency. To ensure the timeliness of existing
entries in vSwitch’s FC that learned from gateway, ALM adopts a
periodic update strategy. We created a management thread in the
vSwitch to traverse FC entries every 50𝑚𝑠 , for checking whether
the lifetime (the interval between the last update and the present) of
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each entry exceeds a certain threshold (e.g., 100𝑚𝑠). If the lifetime
exceeds the threshold, the vSwitch proactively sends RSP requests
4○ for data reconciliation with the gateway. Then, based on the RSP
reply from gateway 5○, vSwitch performs the appropriate actions on
the local FC. For example, if an entry on the gateway is changed or
deleted, the vSwitch will update the corresponding local FC entry.
If the data reconciliation indicates that the local FC is up-to-date,
the vSwitch will not operate on FC.
Reducing Overhead. To reduce the number of RSP packets in
the network and improve the efficiency of ALM, we adopt batch
processing design in ALM. In vSwitch, we allow multiple query re-
quests to be encapsulated into a single RSP packet. Correspondingly,
the gateway can also implement batch processing and encapsulate
multiple responses into one reply packet. We verify our design in
the deployment and get the results that the average request packet
length is about 200 bytes and the maximum bandwidth share of
RSP < 4% (see §7.1). So this overhead is acceptable compared to the
more powerful functions it brings for the virtual networks (e.g., we
can negotiate the MTU, encryption capabilities, and other features
for tenant’s connections when necessary via RSP protocol).

5 ELASTIC NETWORK CAPACITY
In this section, in order to solve the second challenge in Achelous
2.0 (see §2.4), we first introduce the scale-up scheme within a sin-
gle host, which provides elasticity on the premise of performance
isolation. Next, we present our scale-out scheme within a cluster
of hosts.

5.1 Scale-up within Host
Problem & Goal. The elastic bandwidth was extensively studied
[22, 27, 32, 34], however, only monitoring bandwidth can not meet
the elasticity requirements. For example, when a VM comes to a
burst of short connections, although the VM’s bandwidth does not
reach the superior limit, it may consume too many CPU resources
of the vSwitch. Other VMs on the same host can not get enough
CPU resources, which leads to bandwidth decline and a breach of
isolation within the host. Thus, we need to provide elasticity on
the basis of isolation to VMs within a host.
Elasticity and Isolation. To solve this issue, we propose a credit
strategy monitoring two dimensions of indicators. The first indica-
tor is BPS/PPS2 of the VM, denoted by the 𝑅𝐵 , which directly limits
the VM’s traffic rate. The second indicator is the CPU cycle used by
the vSwitch to transfer traffic for the VM, denoted by the 𝑅𝐶 . Both

2Abbreviation for Bits-Per-Second and Packets-Per-Second correspondingly.

Algorithm 1 Elastic Credit Algorithm
Input: 𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑚𝑎𝑥 , 𝑅𝜏 , 𝑅𝑇 ,𝐶𝑟𝑒𝑑𝑖𝑡𝑚𝑎𝑥 , 𝜆,𝑚
1: 𝐶𝑟𝑒𝑑𝑖𝑡 = 0
2: while𝑇𝑟𝑢𝑒 do
3: if 𝑅𝑣𝑚 ≤ 𝑅𝑏𝑎𝑠𝑒 and𝐶𝑟𝑒𝑑𝑖𝑡 < 𝐶𝑟𝑒𝑑𝑖𝑡𝑚𝑎𝑥 then
4: 𝐶𝑟𝑒𝑑𝑖𝑡 = 𝐶𝑟𝑒𝑑𝑖𝑡 + (𝑅𝑏𝑎𝑠𝑒 − 𝑅𝑣𝑚 ) ⊲ Accumulating
5: if 𝐶𝑟𝑒𝑑𝑖𝑡 > 𝐶𝑟𝑒𝑑𝑖𝑡𝑚𝑎𝑥 then
6: 𝐶𝑟𝑒𝑑𝑖𝑡 ← 𝐶𝑟𝑒𝑑𝑖𝑡𝑚𝑎𝑥

7: end if
8: else𝑅𝑣𝑚 > 𝑅𝑏𝑎𝑠𝑒
9: if 𝑅𝑣𝑚 > 𝑅𝑚𝑎𝑥 then
10: 𝑅𝑣𝑚 ← 𝑅𝑚𝑎𝑥

11: end if
12: Calculate

∑
∀ 𝑅𝑣𝑚 and Get Top-k set T𝑘

13: if
∑
∀ 𝑅𝑣𝑚 > 𝜆 · 𝑅𝑇 and current VM ∈ T𝑘 then

14: 𝑅𝑣𝑚 ← 𝑅𝜏

15: end if
16: 𝐶𝑟𝑒𝑑𝑖𝑡 = 𝐶𝑟𝑒𝑑𝑖𝑡 − (𝑅𝑣𝑚 − 𝑅𝑏𝑎𝑠𝑒 ) × 𝐶 ⊲ Consuming
17: end if
18: Sleep(𝑚)
19: end while

indicators provide systematic assurance of elasticity and isolation
for each VM.
Elastic Strategy. We present an elastic credit algorithm to achieve
high utilization of both bandwidth and CPU resources, as shown in
Algorithm 1. The key idea is to balance the idle resource and the
burst traffic of VMs within a host, and thus the VM can use the idle
resources of the host to handle short-term burst traffic.

The total bandwidth resources (CPU resources) for all VMs on
the host are denoted by 𝑅𝐵

𝑇
(𝑅𝐶
𝑇
). The actual bandwidth resources

(CPU resources) usage of the VM is denoted by 𝑅𝐵𝑣𝑚 (𝑅𝐶𝑣𝑚). We set
the default resource limit 𝑅𝐵

𝑏𝑎𝑠𝑒
and 𝑅𝐶

𝑏𝑎𝑠𝑒
for each VM. In addition,

each VM has its own credit values 𝐶𝑟𝑒𝑑𝑖𝑡𝐵 and 𝐶𝑟𝑒𝑑𝑖𝑡𝐶 . The VM
can consume or accumulate its credit values. For example, if 𝑅𝐵𝑣𝑚 <

𝑅𝐵
𝑏𝑎𝑠𝑒

, in idle state, the vSwitch will accumulate the 𝐶𝑟𝑒𝑑𝑖𝑡𝐵 =

𝐶𝑟𝑒𝑑𝑖𝑡𝐵 + (𝑅𝐵
𝑏𝑎𝑠𝑒
− 𝑅𝐵𝑣𝑚) for the VM. If 𝑅𝐵𝑣𝑚 > 𝑅𝐵

𝑏𝑎𝑠𝑒
, in burst state,

the vSwitchwill consume the𝐶𝑟𝑒𝑑𝑖𝑡𝐵 = 𝐶𝑟𝑒𝑑𝑖𝑡𝐵−(𝑅𝐵𝑣𝑚−𝑅𝐵𝑏𝑎𝑠𝑒 )×𝐶 ,
where 0 < 𝐶 ≤ 1 is the credit consuming rate, for the VM. We defer
the details of Algorithm 1 to Appendix A.
Comparison with Token Bucket Method. Our credit algorithm
outperforms the token bucket method with stolen functionality.
First, there is a specific upper bound on credit consumption, which
is one of the important differences between the credit algorithm
and the token bucket. Second, the communication overhead of
the credit algorithm is lower than the token bucket method, since
it does not require the exchange of information between credit
buckets. Furthermore, our method can defend against the breach
of isolation caused by a large amount of resource occupation for a
long time, such as a DDoS attack.

5.2 Scale-out Among Hosts
Problem. Scale-up within a single host cannot keep up with the
growing demand of the tenants’ service expansion. Therefore, using
ECMP to scale-out the service capacity among hosts is imperative.
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Figure 7: Distributed ECMP. Every vSwitch can realize the
ECMP routing without a centralized gateway.

However, the centralized gateway in ECMP deployment will intro-
duce new bottlenecks that hinder network scaling. To this end, we
design a distributed ECMP mechanism on every vSwitch node to
provide a seamless scale-out.
Distributed ECMP. In this mechanism, the VM is allowed to
create a series of bonding vNICs for secure inter-VPC communica-
tion. As shown in Figure 7, the tenant VM on Host1 creates three
bonding vNICs and mounts them into the VMs of service VPC (see
the VMs on Host2, 3, and 4 of the “Middlebox” VPC). All bonding
vNICs share a single Primary IP address (“192.168.1.2” in the figure)
and the same security group. Then the controller will issue the
corresponding ECMP routing entries into the vSwitch on Host1.
That ensures tenant VM’s packets can be sent to corresponding
VMs in “Middlebox” VPC for processing. To scale out smoothly, in
the event that the VM resources in the “Middlebox” VPC become
exhausted, additional VMs are automatically created and mounted
with bonding vNICs. Subsequently, the source vSwitch is updated
with additional ECMP entries, enabling the redirection of traffic
to the newly added VMs. It is important to note that each VM has
the ability to be mounted with multiple bonding vNICs from differ-
ent VPCs. This allows the VMs in the “Middlebox” VPC to serve a
significantly larger number of VMs from different VPCs.

The distributed ECMP mechanism eliminates potential bottle-
necks by ensuring that each source VM is associated with a vSwitch,
which effectively redistributes traffic. This approach significantly
enhances the elastic capabilities of services with heavy-traffic de-
mands. As an example, Alibaba Cloud’s cloud firewall can provide
security detection services to millions of tenants by exposing bond-
ing vNIC interfaces on its single VPC.With the horizontal scalability
provided by the distributed ECMP mechanism, these tenants can
seamlessly benefit from the increased resources without the need
to actively manage or adjust to changes in middlebox availability.
Benefits than Load Balance. Even though the LB architectures
can provide similar functions as the distributed ECMP mechanism,
they often require more tenant configurations. For example, as traf-
fic increases, the centralized LB node may become the bottleneck
and needs to scale out, which is accompanied by the change in
proxy configuration on the tenant side. In addition, the LB archi-
tecture does not support individual security groups for different

Link Health 
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VM

NIC

Check 
request①

Link Health 
Monitor

NIC

Check 
response④

ARP 
request ①

ARP 
response②

To VMs…

vSwitch1 vSwitch2

VM-vSwitch Link Health Check
vSwitch-vSwitch Link Health Check

Check 
request ② Check 

response③

Figure 8: Link health check overview.

tenants. Assuming multiple tenants use the same LB node, but each
tenant needs a specific security group, manually configuring these
network requirements on the vSwitches behind the LB node is the
only option. In contrast, the distributed ECMP mechanism, with its
unified configuration of bonding vNICs, enables seamless network
configuration synchronization and thus makes it easier to scale out
for enterprise services.
Failover in Distributed ECMP. To prevent large telemetry traf-
fic of tenant VPCs from blowing up the VMs in service VPC, we
leverage a centralized management node for health checks in the
distributed ECMP. As shown in Figure 7, the management node
periodically telemetries the vSwitches where “Middlebox” VMs
locates. Then the management node maintains a global state and
synchronizes it with the source side vSwitch. As soon as the vSwitch
fails (e.g., vSwitch on Host4), the management node will inform
the vSwitch on the source side to update the corresponding ECMP
table (i.e., delete the Host4 entry in the ECMP table) to avoid packet
loss.

6 NETWORK RISK AWARENESS AND LIVE
MIGRATION

In this section, we solve the last challenge of Achelous dataplane
(see §2.4). We first introduce the network risk awareness scheme.
Specifically, we probe the network link connectivity within a host
and between hosts, and alert the control plane to the upcoming net-
work risks. Then, we present the seamless live migration schemes
for failure recovery.

6.1 Network Risk Awareness
Problem & Goal. Many virtual network stack bugs could not be
discovered by previous physical telemetry methods, since physical
network probes do not involve virtual network stacks. However,
abnormal network events in hyper-scale clouds are frequent and
inevitable. Failure to address them in a timely and appropriate
manner can lead to minor faults escalating into severe network con-
gestion or application failures. To this end, we design a link health
check module on Achelous to monitor the status of the hyperscale
network for active perception and early warnings of the failures.
This module focuses on two types of network risks: 1) network
link health which consists of VM-vSwitch, vSwitch-vSwitch, and
vSwitch-gateway links; and 2) virtual network device status infor-
mation, which indicates the running status of the network device
itself. We introduce the design details of both as follows.
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Link Health Check. As shown in Figure 8, the VM-vSwitch
health check and the vSwitch-vSwtich health check are the red
path and the blue path, respectively. The VM-vSwitch denotes the
link from vSwitch to VMs in the host. The vSwitch sends ARP
requests to the VMs and gets the VMs’ ARP response to check the
VMs’ network status. The vSwitch-vSwitch is the link from one
vSwitch to the vSwitch on other hosts. After the monitor controller
system configures a checklist (i.e., IP address), the link health check
module sends health check packets to the VMs in the checklist. Then
link health monitor analyses the responses’ latency and reports
risks (e.g., VM failure and link congestion) to the control plane.
To minimize the intrusion of health check packets into the data
plane, we set the health check frequency to 30𝑠 to reduce additional
overheads. Meanwhile, the Achelous encapsulates health check
packets in a specific format and forwards them only to the link
health monitor.
Device Status Health Check. In addition to checking the health
status of links, the Achelous also checks virtual network devices’
health status. First, the Achelous monitors device’s CPU load and
memory usage. Meanwhile, the Achelous monitors the network per-
formance, such as the packet loss rates of virtual and physical NICs.
If a network device is risky (e.g., high CPU load, high NIC drop
rate, and memory exhaustion), we will report these anomalies to
the controller. Then, the controller will intervene and start the fail-
ure recovery mechanism. The health check mechanism allows the
network to be risk-aware, altering potential risks, and proactively
intervening the risk.

6.2 Transparent VM Live Migration
Problem & Goal. We perform failure recovery through live migra-
tion. Traditional live migration mechanisms[12], however, do not
consider the stateful traffic continuity and tenant unawareness. To
solve this challenge, we first introduce four properties to guarantee
traffic continuity during VM live migration. Then, we show the live
migration schemes evolution in Achelous to meet these properties
step by step.
Properties for VM Live Migration. As shown in Table 1, the live
mitigation for failure recovery shouldmeet the following properties:
1) Low downtime means that live migration should achieve continu-
ous high throughput and millisecond-level downtime. Second-level
downtime cannot meet the needs of hyperscale scenarios; 2) State-
less flows refer that we should fast redirect stateless flows (e.g.,

Table 1: The properties of live migration schemes.

Method Low
downtime

Stateless
flows

Stateful
flows

Application
unawareness

No TR ✕ ✓ ✕ ✕

TR ✓ ✓ ✕ ✕

TR+SR ✓ ✓ ✓ ✕

TR+SS ✓ ✓ ✓ ✓

UDP and ICMP); 3) Stateful flows mean that the migration scheme
supports the stateful flows (e.g., TCP and NAT) and adaptive pro-
cessing of the flow state, session information, and even the states
of ACL security group; 4) Application unawareness means that the
migration schemes should adapt to various applications, and native
applications do not need to be aware of the migration process.
The VM Live Migration Schemes. We first design a Traffic Redi-
rect (TR) scheme to forward the stateless flows and meet the low
downtime requirement. To extend the TR scheme to ensure the
continuity of stateless flows, we propose Session Reset (SR) scheme.
However, the SR scheme needs to modify the client application in
VM to respond to TCP reconnection requests during the live mi-
gration, which reduces vendors’ service compatibility and quality.
Last, we develop Session Sync (SS) in Achelous, which synchronizes
necessary sessions on-demand and keeps connection states during
migration progress. The SS scheme ensures stateful flow continu-
ity with native applications’ unawareness. We present all these
schemes in Figure 9. Due to space limitation, we defer the live
migration steps of these schemes in detail to Appendix B.

Our live migration scheme only has milliseconds of downtime. So
that Achelous dataplane can fast recover both stateless and stateful
flows without awareness of native client services. Based on health
monitoring and failure warning, we can smoothly migrate VMs
to other hosts to avoid possible failures or quickly recover from
failure, which greatly improves the reliability of the cloud network.

7 EVALUATION
In this section, we first present the ALM performance in the real-
world deployment. Then, we evaluate the effectiveness and robust-
ness of the elastic credit algorithm. Last, we measure the downtime
and flow continuity of the live migration schemes. In our evaluation,
we collect the data in five typical regions of Alibaba Cloud where it
has deployed Achelous. These regions’ scale range from hundreds
to tens of millions of instances.

7.1 Effectiveness of ALM
Programming Time. Figure 10 shows the programming time of
Achelous in different scale regions. We can see that: 1) the ALM has
low convergence time in our production scenarios. For example, the
average programming time is 1.334s under in VPC with 106 VMs,
while the baseline programmed-gateway model is 28.5s, which is
21.36× larger than ALM; 2) the ALM has better scalability. With the
number of VMs rising from 10 to 106, the preprogrammed-gateway
models’ average programming time changes from 2.61s to 28.50s,
which increases 10.9 times. However, the ALMs’ average program-
ming time increases from 1.03s to 1.33s, which only introduces 0.3s.
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That shows Achelous has the ability to support network scale with
a higher order of magnitude.
ALM traffic and FC entries. Figure 11 shows the proportion
of ALM traffic of different regions whose network scales range
from hundreds of Gbps to tens of Tbps. We can see that: 1) the
proportion of ALM traffic is very low, no more than 4%, which
is acceptable for low programming time; 2) the node in a smaller
region has fewer related routing rules, thus smaller region has
lower ALM traffic ratio. Figure 12 shows the CDF of the FC table
entries in typical regions. As for the storage overhead, with ALM,
the average memory consumption for each vSwitch is 1,900 cache
entries. The peak of the FC storage for a VPCwith 1.5 million VMs is
3,700, which is much less than𝑂 (𝑁 2). We can find that ALM saves
more than 95% memory usage and solves the routing table storage
problem of hyperscale cloud networks with little extra overhead.

7.2 Elastic Network Capability
Effect of Elastic Credit Algorithm. To validate the effect of
the elastic credit algorithm, we set up an experiment of the elastic
network of VM1 and VM2 in the same host, as shown in Figures 13
and 14. We limit any of these two VMs’ base bandwidth to 1000
Mbps. There are three stages: 1) in the first 30s, we use two VMs
on the other host to send a stable flow at 300 Mbps to VM1 and
VM2 respectively. The CPU consumption of both VMs is 20%; 2)
After that, a bursty flow is sent to VM1 (30s to 60s). We observe
that VM1 can briefly reach about 1500Mbps. Then, VM1 consumes
all credits and is suppressed to 1000Mbps. The CPU consumption of
VM1 reached 55% in a short time, and then fell back to 40%; 3) After
60 seconds, we send small packets to VM2, which will consume
much more CPU resources and thus the CPU utilization rate of
VM2 will reach 60%. The VM2 bandwidth can reach 1200 Mbps,
which is then suppressed to 1000 Mbps as for the CPU-based elastic
credit algorithm. Therefore, we observe that the vSwitch always
strictly ensures the CPU resources allocated by VM1 to at least 40%
(in case of resource contention), so it can ensure that the bandwidth
of VM1 is basically unchanged. In practice, our BPS-Based+CPU-
Based methods can also ensure latency due to eliminating resources

Table 2: Achelous detected anomaly cases during the recent
two months.

No. Category # of cases

1 Physical server CPU/memory exception. 12
2 Configuration faults after VM migration/release. 21
3 VM/Container network misconfiguration. 90
4 VM exceptions (memory/CPU exceptions, I/O hang). 12

5 The NICs have software exceptions or I/O hang. 45
6 VM hypervisor exception. 3
7 Middlebox CPU overload by heavy hitters. 15
8 vSwtich CPU overload by burst of traffic. 27
9 Physical switch bandwidth overload. 9

In total 234

competition, and 99% of the flows have latency within 300 𝜇s. Since
we deployed this mechanism, as shown in Figure 15, the average
number of hosts suffering resources (CPU/Bandwidth) contention
has decreased by 86%. In summary, our elastic credit algorithm
with BPS-Based+CPU-Based methods can safeguard isolation and
have high elastic performance in both simple and complex VPC
scenarios.
Effectiveness of distributed ECMP mechanism. As for the dis-
tributed ECMP mechanism, we deploy it in all the production cloud
regions. With the seamless scale-out, we achieve the expansion
and contraction of network services within 0.3s. Based on these
technologies, we have accomplished that 80% of Alibaba Cloud
network middleboxes (such as LB, NAT, VPN Gateway, etc.) have
migrated to the VM on cloud as a form of Network Functions Vir-
tualization (NFV). These middleboxes inside VMs have provided
advanced network services for millions of tenants.

7.3 Effectiveness of Health Check and Live
Migration

Anomaly Cases Detected by Health Check. As discussed in
§6.1, Achelous can detect link failures and device failures. Through
the warning of health check, Achelous can be aware of the possible
failures in advance of tenants. Table 2 illustrates that Achelous
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helps detect multiple classes of hardware failures (the first part of
Table 2). Among them, CPU exception is the most common type as
many virtual devices are based on CPU forwarding (e.g., vSwitch,
and gateway). Also, Achelous can detect resource contentions in
the second part of Table 2, which may cause VM network jitter
or performance degradation. Last but not least, Achelous’s health
check mechanism is extensible. We can add more indicators to
monitor in the future to quickly detect failure.

Downtime During Live Migration. We measure the downtime,
the interval between migration and reconnection, under two cir-
cumstances (ICMP and TCP). Specifically, we first sequentially send
the ICMP probe. We count the number of lost packets during mi-
gration so as to calculate the downtime. Second, we create TCP
connections between VMs. We derive the downtime by checking
the TCP seq number. Figure 16 shows the downtime of the TR
scheme and the traditional no redirect scheme. We observe that TR
can greatly reduce the downtime during live migration, and the
downtime of TR is 400ms, which is 22.5× and 32.5× faster than the
traditional method, under ICMP and TCP, respectively.

Effectiveness of Session Reset and Session Sync. In Figure 17,
if an application has auto-reconnect function (see the green line),
it will restart the application connection in 32s (default in Linux
system). Otherwise (see the red line), the connection will be lost
during the VM live migration. In contrast, our TR+SR only intro-
duces 1s downtime. Therefore, our TR+SR can successfully reduce
the waiting time before application reconnection. In scenarios such
as the destination VM is configured with ACL rules, which only
allow source VM in and reject any other VMs’ traffic. As shown
in Figure 18, we observe a blocked connection under TR+SR for
lacking ACL rules in the new vSwitch, making the flow impossible
to continue. In contrast, our TR+SS scheme enables the vSwitch to
synchronize session; as such, the connection will not be blocked.
It is worth noting that this scheme only introduces about 100𝑚𝑠

of failure recovery latency. We conclude that Achelous live migra-
tion schemes are practical and low-latency, only consuming a few
hundred milliseconds while guaranteeing the continuity of stateful
flows.

8 EXPERIENCES
Achelous has been deployed in our hyperscale VPCs for years, im-
proving the serviceability of the Alibaba cloud network. Even facing
volatile production challenges such as increasing network scale,
bursty traffic and malicious attacks, it still provides a great experi-
ence for tenants, so we believe we make the right things in the right
places. Besides the designs in the paper, we have also accumulated
lots of experience R&D for cloud networks. Now we would like to
share them in this section.

8.1 Deployment Issues
Can the designs in Achelous be used in the hardware of-
floaded architectures? As the hardware offload method becomes
a trend, major cloud vendors have all deployed the SmartNICs or
CIPU-Based vSwitches (such as [18]) to improve VM network ca-
pacity. However, the fact is that non-CPU hardware, such as FPGA,
cannot independently realize all functions of cloud vSwitch due
to the lack of flexibility and iteration efficiency. So for Achelous,
hardware plays the role of the accelerated cache (like the fast path
mentioned in §2.3). Its implementation will not influence the col-
laborative designs in this paper. Moreover, Alibaba’s experience
in hardware offload acceleration in recent years also proves these
co-designs can serve well on the SoC-based vSwitch.
Is Achelous ready to serve outside Alibaba Cloud? The main
innovations on Achelous 2.0 are dedicated to addressing new chal-
lenges in hyperscale VPCs. It should be noted that none of these
designs are implemented based on Alibaba Cloud’s special hard-
ware platform or software framework. This means that all these
designs are based on simple principles, and can be easily imple-
mented on any hardware and software platform. We believe that as
the cloud computing market grows, other small and medium-sized
cloud vendors will soon face the same scale issues like us, and they
will benefit from our experiences.

8.2 Lessons Learned
Co-design is a trend for cloud network. As Moore’s Law fails,
it is more difficult to obtain good benefits from the over-design on
a single module. The hardware offloading does not mean always
providing stable high performance in complex scenarios. Therefore,
the co-design between different network components is necessary
for higher-quality virtual networks. Taking the example from the
ALM mechanism (in §4.1), fast convergence in such a huge but
variable network cannot be achieved without the cooperation of
gateway, controller and vSwitch. We believe, in the future, the
co-designs (including collaboration of both inter-components and
hardware-software) will play a more critical role and go beyond
what can be achieved by simply stacking resources.
Besides performance, the fast iteration and flexibility are
also critical to network forwarding components. The itera-
tion speed of forwarding components will directly determine how
fast we can support new requirements from tenants and fix the ex-
isting bugs. These capabilities are critical to the evolution of cloud
infrastructure. However, in implementation, we need to take into
account both the flexibility and high performance in the architec-
ture design. In Achelous, after several years of iteration, we adopt
the design of decoupling service logic from acceleration paths. That
enables us to realize the acceleration forms of software, hardware
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and other different architectures under the same set of service logic.
That’s why the innovations in this paper are easily achieved in
Achelous 2.0.

9 RELATEDWORK
Network virtualization has been a research hotspot in the past
decade. In terms of the data plane, the most popular open-source
project Open vSwitch [43] first proposed the design of separating
the fast path and the slow path. After that, a series of performance
optimization methods, such as user-space component acceleration
and hardware offloading schemes, are proposed [18, 19, 25, 51]. For
the control plane, Google proposed B4 [26, 29] and Azure presented
VFP [17] enriching SDN theory. However, as the development of
cloud computing gradually enters a new stage, unilateral optimiza-
tion is no longer to support the growing tenant requirements. There-
fore, Achelous proposes the collaborative design of data plane and
control plane to support hyperscsale VPC networks. We will briefly
discuss the works most relevant to Achelous.

Hyperscale network programming. Pre-programmed model
[31] is the first used to program software-defined network. How-
ever, its programming overhead increases quadratically with the
size of the VPC, which is unacceptable for our ultra-large clusters.
Andromeda [14] and Zeta [54] combined the advantages of the
gateway model and the on-demand model. But the flow granularity
they chose will make gateway a potential heavy hitter, and it is also
more burdensome than Achelous because using a centralized node
to decide offloading strategy.

Elasticity. There are many well-studied works on network band-
width allocation, such as [8, 11, 22, 27, 32, 34, 45]. However, the
traditional bandwidth policies ignore the consumption of multiple
resources in the virtual network. Picnic [33] and authors in [7] men-
tioned that it is necessary to share and allocate network-dedicated
CPU resources for tenants, but lack of unified system management.
Achelous adopts a unified resource allocation algorithm for different
resources, which not only ensures isolation but also fits network
bursts. On the other hand, we noticed that there is no existing work
on how to deploy ECMP routing in a virtual network. So we pro-
pose the distributed ECMP mechanism to overcome the bottleneck
in centralized deployment and provide tenants the ability to scale
out easily.

Reliability. For failure telemetry, there are lots of works [10, 20,
21, 23, 24, 47, 50, 56] dedicated to the failure telemetry in physical
networks, but most of them cannot be directly used in virtual net-
works due to the variable virtual topology. So we develop a virtual
network telemetry method in Achelous to perceive failure and do
failover before the tenant awareness. For live migration, most of
the existing works focus on host resource migration, e.g., memory
dirty pages on bare metal cloud [28], or SR-IOV network devices
[53]. khai et al. [30] proposed a multi-step migration process to re-
duce downtime and ensure traffic continuity during migration, but
cannot solve the continuity of stateful flows. In Achelous, the live
migration with “TR+SS” mechanisms ensures the non-interruption
of tenant’s stateful services.

10 CONCLUSION
With the growing demand of cloud computing, cloud vendors need
to host millions of instances in a single VPC. Thus it becomes ex-
tremely challenging for the fast network configuration convergence,
high elasticity, and high reliability. To this end, we proposeAchelous,
which provides years of high serviceability for hyperscale VPCs
in Alibaba Cloud. In Achelous, we show in detail that it achieves
this goal with an ALM mechanism, elastic network capacity strat-
egy, distributed ECMP mechanism, and network failure avoidance
schemes. Compared with the existing well-studied designs on data
plane, Achelous opens up a few exciting research directions regard-
ing ensuring serviceability for cloud networks, which is the key
success metric of cloud vendors in our opinion. Achelous does not
rely on any custom hardware, so other small and medium-sized
cloud vendors can benefit from our design and our deployment
experience presented in this paper.

This work does not raise any ethical issues.
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A DETAIL OF ELASTIC STRATEGY
Appendices are supportingmaterial that has not been peer-reviewed.

The total bandwidth resources (CPU resources) for all VMs on
the host are denoted by 𝑅𝐵

𝑇
(𝑅𝐶
𝑇
). The actual bandwidth resource

(CPU resources) usage of the VM is denoted by 𝑅𝐵𝑣𝑚 (𝑅𝐶𝑣𝑚). We set
the default resource limit 𝑅𝐵

𝑏𝑎𝑠𝑒
and 𝑅𝐶

𝑏𝑎𝑠𝑒
for each VM. In addition,

each VM has its own credit values 𝐶𝑟𝑒𝑑𝑖𝑡𝐵 and 𝐶𝑟𝑒𝑑𝑖𝑡𝐶 . The VM
can consume or accumulate its credit values. For example, if 𝑅𝐵𝑣𝑚 <

𝑅𝐵
𝑏𝑎𝑠𝑒

, in idle state, the vSwitch will accumulate the 𝐶𝑟𝑒𝑑𝑖𝑡𝐵 =

𝐶𝑟𝑒𝑑𝑖𝑡𝐵 + (𝑅𝐵
𝑏𝑎𝑠𝑒
− 𝑅𝐵𝑣𝑚) for the VM. If 𝑅𝐵𝑣𝑚 > 𝑅𝐵

𝑏𝑎𝑠𝑒
, in burst state,

the vSwitch will consume the 𝐶𝑟𝑒𝑑𝑖𝑡𝐵 = 𝐶𝑟𝑒𝑑𝑖𝑡𝐵 − (𝑅𝐵𝑣𝑚 − 𝑅𝐵𝑏𝑎𝑠𝑒 )
for the VM. Besides, the 𝐶𝑟𝑒𝑑𝑖𝑡𝐵 is bounded by 0 ≤ 𝐶𝑟𝑒𝑑𝑖𝑡𝐵 ≤
𝐶𝑟𝑒𝑑𝑖𝑡𝐵𝑚𝑎𝑥 .

When it comes to burst traffic, a VM can consume its credit
values to use more resources. We also set resources maximum 𝑅𝐵𝑚𝑎𝑥

and 𝑅𝐶𝑚𝑎𝑥 for each VM, i.e., 𝑅𝐵
𝑏𝑎𝑠𝑒

≤ 𝑅𝐵𝑣𝑚 ≤ 𝑅𝐵𝑚𝑎𝑥 and 𝑅𝐶
𝑏𝑎𝑠𝑒

≤
𝑅𝐶𝑣𝑚 ≤ 𝑅𝐶𝑚𝑎𝑥 . However, the host’s resources may be insufficient for
multiple VMs to consume their credits simultaneously. For example,
if
∑
∀ 𝑅

𝐵
𝑣𝑚 > 𝜆 · 𝑅𝐵

𝑇
, where 𝜆 is the threshold to measure whether

the host is under resource competition, we will set 𝑅𝐵𝜏 instead of
𝑅𝐵𝑚𝑎𝑥 for the Top-K heavy-traffic VMs (T𝑘 ). Notice that 𝑅𝐵𝜏 ≤ 𝑅𝐵𝑚𝑎𝑥 .
We empirically adjust each VM’s parameters, such as 𝑅𝐵𝜏 , 𝑅𝐵𝑚𝑎𝑥 ,
and 𝑅𝐵

𝑏𝑎𝑠𝑒
. In case of extreme competition, all VMs are set to 𝑅𝐵𝜏

to guarantee the performance isolation, we ensure that the sum of
VMs’ 𝑅𝐵𝜏 are no more than 𝑅𝐵

𝑇
, i.e.,

∑
∀ 𝑅

𝐵
𝜏 ≤ 𝑅𝐵

𝑇
.

B DETAIL OF VMS LIVE MIGRATION
Traffic Redirect. When migrating stateless flows, the traditional
method of VM migration is that the vSwitch learns the new path
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through the gateway or control plane after the VMmigration. There-
fore, they will suffer from downtime in the order of seconds. To
solve this issue, we propose TR to redirect the traffic to the vSwitch
on the destination host.

Figure 9 shows the procedure of TR: After the controller sends
the live migration command (including VM-host mapping) to the
vSwitch2 on the source host, the VM2 migrates to the target host
via the standard migration method 1○, and the vSwitch2 issues a
routing rule to route traffic to the VM2’ on the target host. Then
vSwitch2 acts as a routing node to redirect all the packets (vSwitch1
→ VM2) to the vSwitch3 2○. Once redirect traffic hits the new rule,
the vSwitch2 will send a reply packet to the vSwitch1. The TR
will end until the vSwitch1 learns the new rules through ALM 3○.
As such, the VM successfully achieved live migration 7○, and TR
ensures the continuity of the traffic during live migration.
Session Reset. Next, we support the continuity of stateful flows.
The stateful flows require each VM to save the flow state and session
information, which has a tight dependency between the source and
the destination VMs. Therefor, to provide a reliable live migration
scheme and smoothly redirect stateful flows during migration, we
should maintain the session/flow information during the migration
process.

As shown in Figure 9, after the VM2’ instance is established
on the target host 1○, the VM2 sends ”reset” packets to the VM1
on HOST1 5○. The VM1 sends ”syn” packets to VM2 (actually
VM2’) to establish a new connection 6○. These ”syn” packets and

subsequent flows will be redirected by vSwitch2 to VM2’ on the
target host 2○, so as to ensure the continuity of existing connections.
Then, vSwitch1 learns new rules via ALM 3○ and establishes a new
connection directly with vSwitch3 7○.

Session Sync. However, the SR scheme needs to modify the cus-
tomer’s application to respond to TCP reconnection requests during
the live migration, which reduces vendors’ service compatibility
and quality. We further propose Session Sync, only copying stateful
flow-related and necessary sessions, to support the continuity of
stateful flows from native applications which do not have recon-
nection ability or, we say, application unawareness.

As shown in Figure 9, after the VM2’s new instance is established
on HOST3 1○, vSwitch2 generalizes TR rules to redirect network
traffic 2○, the vSwitch3 will copy stateful flow-related and neces-
sary sessions from vSwitch2 4○. In this way, the stateful links can
continue to work as usual, and the on-demand copy will reduce
the network damage rate by 50%. Finally, after vSwitch1 learns the
new rules via ALM 3○, it will establish a new connection directly
with vSwitch3 7○.

Our live migration scheme only has milliseconds of downtime.
So that Achelous can fast recover both stateless or stateful flows
without awareness of native tenant services. Based on health moni-
toring and failure warning, we can smoothly migrate VMs to other
hosts to avoid possible failures or quickly recover from failure,
which greatly improves the reliability of the cloud network.
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